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Introduction



Network Fluctuations and Variability
• Unpredictable network performance prevalent across all edge, cloud and HPC

• Cloud VMs avail different tiers of networking bandwidth based on pricing 

• In federated learning, edge devices have slower networks than fog nodes 

• Network heterogeneity in data-centers arises from device placement, topology, link b/w 

• Network bandwidth may fluctuate over time because of:

Network Congestion QoS Prioritization Resource Contention Network Scheduling



Distributed Data-Parallel Training

• Computational requirements for SOTA DL training 
doubles every 3.4 months

• Computation overhead is proportional to model size

• Parallel performance improved by performing more 
work per-iteration
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Parallel Scaling in Distributed Learning

• DNN training is an iterative-convergent process; each training step is computationally 
identical

• Aggregating updates among workers is 
communication-heavy, limiting linear 
scaling of distributed training jobs
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Parallel Scaling in Distributed Learning cont’d

• Synchronous training aggregates updates either in a 
centralized or decentralized topology

• Communication cost is influenced by worker placement 
in the cluster 
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• Based on the alpha-beta communication model, 
collectives have varying overheads
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Statistical Aspect of Data-Parallel Scaling
• Although DL training is iterative-convergent, 

features learned over the epochs are not 
equally attributed to each iteration

g1

g2
Full gradient descent

Mini-batch gradient descent
Locally computed gradients from different workers

• This is due to the stochastic nature of gradient 
descent; iterations don’t contribute equally 
towards overall model learning

• Gradients computed from a randomly sampled mini-batch are noisier compared to full-
batch gradient descent 

• Aggregated gradients are a better approximation of the true gradients computed over 
entire training data



Background and Related Work



Communication scheduling

• Synchronization cost hidden via computation-communication overlap; gradients of out 
layer are transmitted while inner layers are still processing

• Can be inefficient on models with numerous layers of non-uniform size

• Tensor-fusion and gradient bucketing combines tensors to perform efficient reduction 

• However, the scope of interleaving communication with compute diminishes on newer 
hardware



Gradient Compression
• Sparse methods like Top-k reduce 

communication volume by choosing largest 
k% gradients
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• Methods like LWTop-k and MSTop-k apply 
different threshold estimation mechanisms 
and communicate top k% gradient values + 
indices 

• Per-iteration cost in gradient compression is 
comprised of:

For compression to be viable over DenseSGD



Gradient Compression vs. DenseSGD
• DenseSGD can perform reduction via send/recv or 

AllReduce
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• We vary latency-bandwidth via traffic control (‘tc’) over 
1B tensor and compare communication + compression 
overhead at various CRs



Statistical Efficiency of Gradient Compression

High CRs reduce 
communication cost, lower 
iteration time and improve 

speedup
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But higher CRs tend to 
degrade final model quality 

as well!

We compare final model 
accuracy of LWTopk and 
MSTopk compression at 

various CRs



Statistical Efficiency of Gradient Compression cont’d
• With high CRs, compression loses significant gradient information that degrades accuracy

• Mitigated via error-feedback mechanism

• Statistical efficiency in compression measured 
by comparing variance in prior and post 
compression gradients



AR-Topk Compression



Compression with the Optimal Collective
• Optimal communication collective between AllReduce variants (Ring, Tree, etc.) or 

AllGather depends on model-size, cluster-size, target CR (if any) and network 
configuration (e.g., topology, latency, bandwidth)

• For cases where AllReduce has lower communication overhead, we propose AllReduce 
friendly Top-k compression-communication mechanism called AR-Topk 

• In AR-Topk, one worker broadcasts its indices across the cluster; Gradients at 
broadcasted indices are then aggregated across via AllReduce

How to choose which worker broadcasts its indices to all other workers in the cluster to 
aggregate its top-k gradients?



Worker selection in AR-Topk Compression
• Worker can be selected in a round-robin manner (STAR-Topk) or based on the worker 

with most volatile updates (VAR-Topk)
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AR-Topk with Ring/Tree-AllReduce or AG?
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Network latency limited to 1 ms and bandwidth varied to different CRs to compare communication cost



Communication Cost Analysis
• AR-Topk communication cost varies depending on AllReduce implementation

Comm. Cost of AR-Topk with Ring-AR

Comm. Cost of AR-Topk with Tree-AR



Balancing Parallel-Statistical Efficiency in 
Gradient Compression
• Parallel scaling is influenced by the network, collective used, model-size, cluster-size and 

target CR

• However, model convergence is also influenced by statistical efficiency of a compressor

Thus, it is crucial to account for both parallel and statistical efficiency in DL 
compression to attain training speedups while achieving good accuracy

Compression Time Communication Time

Parallel 
Efficiency

Statistical 
Efficiency

Compression Gain



Compression as Multi-Objective Optimization
• Parallel and Statistical efficiency are pareto-related!

• Smaller CRs compress more, reducing communication cost; simultaneously degrade 
model quality as well

• As gradient sensitivity and network performance can change during training, 
should we change CR over time as well?

We model gradient compression as a multi-objective optimization problem!



Compression as Multi-Objective Optimization cont’d
• At any training stage, optimal CR is one that minimizes

compression and communication time, while maximizing
gain 
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• CR is bounded in a min-max exploration space to avoid 
losing information at low and pay high cost at high CRs

• CR search triggered when latency, bandwidth or gain 
changes beyond a certain threshold; b/w measured via 
iperf and latency by traceroute

• We emulate different network settings by varying latency-
bandwidth over each epoch via tc 



MOO Configuration details
• Set c_low to 0.001 and c_high to 0.1 and CR scaling factor of 3; candidate CRs are thus 

0.1, 0.033, 0.011, 0.004 and 0.001

• Choose between Ring and Tree-AR in AR-Topk uses checkpoint-restore approach over 
NCCL communication library

• Initial exploration phase involves running each CR to measure compress, comm. time and gain

• Trigger exploration when latency, bandwidth or gain changes by 10% or more

• Based on the network and training configuration, optimal communication collective is chosen



MOO-based Adaptive Compression

Distribution density of all candidate CRs Distribution density of collectives used

With this adaptive compression approach, we speedup training while still achieving high accuracy

ResNet18: 89.88% (C1) and 90.1% (C2) ResNet50: 98.56% (C1) and 98.62% (C2)

AlexNet: 82.4% (C1) and 83.6% (C2) ViT: 80.75% (C1) and 81.2% (C2)



Conclusion
• Optimal communication collective depends on network topology, latency, bandwidth, 

model-size, cluster-size and degree of compression

• AR-Topk compression-communication mechanism provides good convergence and uses 
AR over AG when the former performs better (i.e., has lower communication cost)

• Parallel and statistical efficiency in gradient compression are pareto-related and balanced 
by modeling compression as a multi-objective optimization problem

• With MOO, we choose CR dynamically and attain convergence quality akin to static 
compression, and speedup training with an appropriate communication collective



Thank you!

https://www.sahiltyagi.com/
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