
Cost-Effective Sharing of Streaming Dataflows
for IoT Applications

Shilpa Chaturvedi , Student Member, IEEE, Sahil Tyagi, and Yogesh Simmhan , Senior Member, IEEE

Abstract—Internet of Things (IoT) applications are often designed as dataflows that analyze sensor data in real-time to make

decisions. Stream processing systems like Apache Storm execute these on Cloud infrastructure. As IoT applications within shared data

environments like smart cities grow, they will duplicate tasks like pre-processing and analytics. This offers the opportunity to

collaboratively reuse the outputs of overlapping dataflows, improving the resource efficiency on Clouds. We propose dataflow reuse

algorithms that when given a submitted dataflow, identify the intersection of reusable tasks and streams from existing dataflows to form

amerged dataflow, with guaranteed equivalence of their output streams. Algorithms to unmerge dataflows when they are removed, and

defragment partially reused dataflows are also proposed. We implement these algorithms for the Storm fast-data platform, and validate

their performance and resource savings using 86 real and synthetic dataflows from eScience and IoT domains. Our reuse strategies

reduce the number of running tasks by 34–45 percent and the cumulative CPU usage by 29–63 percent. Including defragmentation of

incremental dataflows achieves a monetary savings on Cloud resources of 36–44 percent compared to dataflows without reuse, and

has limited redeployment overheads.

Index Terms—Distributed stream processing, dataflow reuse, cloud elasticity, internet of things, fast data

Ç

1 INTRODUCTION

ONE of the fast growing sources of data is from Internet of
Things (IoT) deployments, where sensors and actuators

collect observational data from and enact control signals on
physical and virtual infrastructure [1]. Besides consumer
IoT devices like wearables and smart thermostats [2], Smart
Cities offer a canonical use of IoT to provide effective citizen
services, and improve the efficiency of city utilities. Such
Cyber-Physical Systems (CPS) include smart power grids
where real-time load data from consumers help with
demand-response optimization [3], [4] and intelligent trans-
portation where street sensors and camera feeds are used to
manage traffic lights, transit frequency, and pricing [5].

Smart City deployments make available urban stream-
ing data from millions of sensors,1 with the need to ana-
lyze them to make real-time decisions or provide
services. Distributed Stream Processing Systems (DSPS) offer
a fast data platform to compose continuous dataflow appli-
cations that execute constantly over one or more streams.
DSPS like Apache Storm, Flink and Spark Streaming [6], [7],
[8] are designed to scale-out across commodity clusters

and Cloud Virtual Machines (VMs), and operate on
1000’s of events=sec. They are often used to compose IoT
and Smart City applications hosted on the Cloud, and
access sensor streams pulled from the edge into the data-
center [9], [10]. E.g., IoT gateway services from Microsoft
Azure and Amazon AWS give the ability to push streams
to their Cloud-hosted stream processing platforms from
edge devices.2,3

Motivation. As Smart City installations expand, thou-
sands of public data streams on traffic, pollution,
weather, etc. from diverse domains will be available for
integration and analysis on the Cloud. One can expect an
explosion of innovative services and “apps” that perform
online analytics over these streams, and even personalize
it for individuals. E.g., an app may correlate weather
observation streams (turning cloudy) with power grid gen-
eration streams (solar output drop) to predict when surge-
pricing might be triggered by the utility to offset demand.
This can help users (or their digital agents) decide to, say,
recharge their electric vehicle or start their smart washing
machine [4], [10].

Cloud-hosted DSPS will form the scalable analytics eng-
ine for composing and executing these continuous dataflows,
collocated with the data streams [11]. These compositions
are enabled through distributed streaming platforms [12],
Functions as a Service (FaaS) [13], and IoT application plat-
forms [14], [15]. At the same time, the numerous dataf-
lows that operate on these shared streams, are likely to
duplicate common tasks like data pre-processing (parsing,
reformat, unit conversion), quality checks (cleaning, outlier

1. Urban Data Platform, EU Science Hub, http://urban.jrc.ec.
europa.eu

� S. Chaturvedi is with the NetApp Inc., Bangalore, Karnataka 560048,
India. E-mail: shilpac@iisc.ac.in.

� S. Tyagi is with the Indiana University, Bloomington, IN 47405 USA.
E-mail: sahiltyagi@iisc.ac.in.

� Y. Simmhan is with the Department of Computational and Data Sciences,
Indian Institute of Science, Bangalore, Karnataka 560012, India.
E-mail: simmhan@iisc.ac.in.

Manuscript received 6 Apr. 2018; revised 24 Mar. 2019; accepted 2 May 2019.
Date of publication 6 June 2019; date of current version 6 Dec. 2021.
(Corresponding author: Shilpa Chaturvedi.)
Recommended for acceptance by Y. Wu.
Digital Object Identifier no. 10.1109/TCC.2019.2921371

2. Microsoft Azure IoT, https://azure.microsoft.com/en-in/suites/
iot-suite/

3. AmazonAWSGreengrass, https://aws.amazon.com/greengrass/

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 4, OCTOBER-DECEMBER 2021 1391

2168-7161 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Indiana University. Downloaded on June 05,2024 at 18:28:07 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8079-3172
https://orcid.org/0000-0002-8079-3172
https://orcid.org/0000-0002-8079-3172
https://orcid.org/0000-0002-8079-3172
https://orcid.org/0000-0002-8079-3172
https://orcid.org/0000-0003-4140-7774
https://orcid.org/0000-0003-4140-7774
https://orcid.org/0000-0003-4140-7774
https://orcid.org/0000-0003-4140-7774
https://orcid.org/0000-0003-4140-7774
http://urban.jrc.ec.europa.eu
http://urban.jrc.ec.europa.eu
mailto:
mailto:
mailto:
https://azure.microsoft.com/en-in/suites/iot-suite/
https://azure.microsoft.com/en-in/suites/iot-suite/
https://aws.amazon.com/greengrass/

detection, interpolation), and even analytics (ARIMA time-series
predictions, moving window averages) [16], [17]. This offers the
opportunity to reuse parts of the logic among different data-
flows to avoid recomputation, thereby reducing the costs for
using Cloud resources for app developers and end-users, and
the time to deployment aswell.

Gaps. Such scenarios are common in collaboratory scien-
tific and Enterprise environments where datasets and work-
flows are reused [18], [19]. Scientific projects often make
Level 1/2/3 datasets, which have been pre-processed to dif-
ferent degrees using standard routines, available to their
user groups. Similarly, repositories like myExperiment and
OPMW allow the definition and reuse of scientific work-
flows by the broader community [20], [21]. Provenance col-
lected from workflow runs have also been leveraged for
data and workflow reuse [22], [23]. Even Apache Spark uses
lineage to avoid recomputing RDDs [8]. Others have exam-
ined stream reuse in wide area networks [24].

While related, the problem we address differs from these
prior works in a key aspect. Reuse of workflows and their
outputs happens after their execution. We instead focus on
streaming applications that are actively running and generat-
ing transient data streams. This requires a greater awareness
of the platform runtime, and is performance sensitive.

Contributions. A preliminary version of this article intro-
duced the formalism and algorithms for the reuse of stream-
ing dataflows by merging/unmerging them, and validated
it for two sets of dataflows [25]. We extend these here, and
include two defragmentation approaches for partially used
dataflows, offer a billing model for shared dataflows on
Clouds, and include a more detailed evaluation. Specifi-
cally, we make the following contributions in this article:

1) Wemotivate (Section 2) and formally define (Section 3)
the problem of streaming dataflow reuse, including
the equivalence between tasks present in dataflows.

2) We propose algorithms for merging a submitted data-
flowwith the deployed ones at specific overlap points,
and unmerging a merged dataflow when removed,
while guaranteeing their output stream equivalence,
in Section 4.

3) We offer defragmentation strategies to unmerged par-
tially used dataflows while balancing the cost of (re)

deployment in Section 5, and include a user costmodel
for billing shared dataflows onClouds in Section 6.

4) We implement these strategies in Apache Storm, and
evaluate their resource and cost savings for real and
synthetic workloads of Smart Utility and eScience
dataflows in Section 7.

We also review related literature in Section 8, and present
our conclusions and future work in Section 9.

2 PROBLEM DESCRIPTION

Continuous or streaming dataflows are composed as a Directed
Acyclic Graph (DAG), where vertices are user logic or tasks
and directed edges are streams that transfer events from the
output of a task to the input of a downstream task. Tasks exe-
cute once per input event to generate zero or more output
events, with the ability tomaintain state and aggregate multi-
ple events. Once deployed to a DSPS, dataflows execute contin-
uously on their input stream(s) till undeployed.

Streaming dataflows are used to compose IoT applications
[5], [11], [16]. They operate over streams from physical sensors
that are publicly available, and publish the output streams in
real-time, or persist them to storage. The output streams from
each task in the dataflow can be considered as an intermedi-
ate stream that has been partially processed through the pre-
ceding dataflow tasks. We call these output and intermediate
streams that have been processed as derived streams, in con-
trast to the raw streams from sensors.

DSPS like Apache Storm and Flink can run multiple con-
currently dataflows on a shared commodity cluster or Cloud
VMs. Dataflows submitted to Storm execute independently
on hosts of the Storm cluster. Tasks from multiple dataflows
can be collocated on the same machine, but there is no
implicit sharing of events or tasks between dataflows.

IoT dataflows that use the same raw streams as inputs are
likely to have similar pre-processing and analytics tasks. As
Smart Cities make many urban observations public, startups
and citizen scientists will design novel applications for resi-
dents, hosted on public or private city-owned Clouds. Hence,
it is expected that dataflows with significant overlaps, but
running independently, will duplicate efforts.

Fig. 1 illustrates such a scenario where dataflows A, B, C
and D are performing Extract-Transform-Load (ETL) and Sta-
tistical Summarization (STATS) on two streams, from urban
sensing and smart power meters [16]. The dataflows differ in
overall structure but share similar prefix tasks. E.g., A, B and
C share the raw stream source and the next two tasks, while B
and C share an additional third task. These three dataflows
can be “merged” into one dataflow, A+B+C, where B reuses
the derived stream from A’s Kalman Filter output, and C
reuses the derived stream from B’s Sliding Window output.
This is equivalent to running the three independently, but
avoids duplicate execution of the prefix tasks.WhileD has an
overlapwithA, the source stream is different, and hence they
cannot be merged. Similarly, when B is undeployed, then an
“unmerge” should bring it toA+C.

These dataflows may be owned by different users in the
IoT community, and collaboratively wish to reuse their exe-
cution in a Cloud data center to reduce costs. While these
examples show simple sequential dataflows being merged
and unmerged, more realistic scenarios will have forks and

Fig. 1. Illustration of dataflows being merged for reuse on submission,
and unmerged on removal.

1392 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 4, OCTOBER-DECEMBER 2021

Authorized licensed use limited to: Indiana University. Downloaded on June 05,2024 at 18:28:07 UTC from IEEE Xplore. Restrictions apply.

joins, and dataflows added and removed regularly. While
dataflows simplify application composition, manually iden-
tifying the overlaps with existing dataflows is infeasible in a
Smart City ecosystem with 100’s of users and applications.

In this article, we explore algorithms to transparently
reuse derived streams in submitted dataflows to reduce
resource utilization while guaranteeing that the outputs of
the dataflows are identical to the original ones, even when
the reused dataflows are removed. There are specific chal-
lenges on correctness and efficiency that must be addressed.

� We need to automatically identify the derived streams
in existing dataflows that offer the logical equivalent
of a stream in the submitted dataflow. This requires
checking that the ancestors of the derived stream
matches the one in the new dataflow. The raw input
stream(s), the task types and their configurations
must be identical.

� We must ensure that this reuse is maximal, and as far
downstream as possible, to take the best advantage
of the deployed dataflows.

� We should support the reuse of multiple derived
streams from different dataflows by the same incoming
dataflow.

� When a dataflow is removed, the unmerging should
retain the correctness of the remaining (merged)
dataflows while minimizing the disruption to exist-
ing applications.

� We should track the degree of reuse between data-
flows to allow accurate billing of Cloud resources to
users.

Next, we formalize this problem and propose dataflow
merge and unmerge algorithms to meet these requirements.

3 PROBLEM FORMULATION

3.1 Tasks, Streams and Dataflows

An event is a discrete unit of data that is uniquely identified
by an event id, and has a payload whose contents are opaque
to the DSPS platform. An abstract task t ¼ htype; configi is a
user-defined logic defined by its type, which executes on
one event at a time, and may generate zero or more events
for each event consumed. The behavior of the user logic is
controlled by the config property for the task, such as the
window size for an aggregation task or the NoSQL URL for
an event storage task. A stream transfers events generated
from one task to another downstream task for consumption.

Let T ¼ ftg be the universal set of abstract tasks. Two
such tasks are identical if their type and config are the same,

ti ¼ tj) ti:type ¼ tj:type ^ ti:config ¼ tj:config:

Source and sink tasks are special abstract tasks that solely
generate and consume events, respectively. A source task
does not consume an input stream, but produces (raw) events
on its output streambased on its logic (e.g., read from a physi-
cal sensor), while a sink task consumes an input stream but
does not produce an output stream (e.g., persist to a data-
base). Their type uniquely identifies the logical name of the
source or sink while their config has a constant value of
‘SOURCE’ or ‘SINK’. The setsR � T andN � T are the universal
set of source and sink tasks, withR\N ¼ ? .

Users compose streaming applications as a dataflow defi-
ned as a DAG, D ¼ hT; Si, where T ¼ ft1; . . . ; tng is the set
of n concrete tasks (or just “tasks”) that are the vertices of the
DAG, and S ¼ fs1; . . . ; smg is the set of m streams that are
the edges of the DAG. Each task ti 2 T has a globally unique
id and matches an abstract task’s type and config,

ti ¼ hid; typep; configqi j 9t ¼ htypep; configqi 2 T :

The same abstract task can appear multiple times as differ-
ent concrete tasks in the DAG with different id’s. A stream
sk 2 S that transfers output events from an upstream task ti
to the input of a downstream task tj is defined as,

sk ¼ hti:id; tj:idi j ti; tj 2 T:

We allow flexible routing semanticswhenmultiple streams are
incident on the same task or when multiple streams leave the
same task, as long as the routing decisions are made locally at
that task. E.g., a taskmay execute once for each event arriving
from two streams incident on it in any arbitrary order (inter-
leaved), or events from the streams may be pre-processed
(say, pairs joined into one event) before being executed by the
task. Similarly, a copy of each output event from a task may
be sent on all its output streams (duplicated), or they may be
sent only on one based on some event partitioning function.

Two convenience functions return the upstream and
downstream tasks an edge is incident on,

upðsÞ ¼ fti j s ¼ hti:id; tj:idi 2 S; ti; tj 2 Tg
downðsÞ ¼ ftj j s ¼ hti:id; tj:idi 2 S; ti; tj 2 Tg:

A dataflow has a set of input tasks, I, and a set of output
tasks, O, that form the start and the end boundaries of the
DAG, and are from the universal set of abstract source and
sink tasks. Given ti 2 T; tR 2 R and tN 2 N , we have,

I ¼ fti j ti:config ¼ Source ^ ti:type ¼ tR:typeg
O ¼ fti j ti:config ¼ Sink ^ ti:type ¼ tN:typeg:

A DSPS engine continuously executes tasks of the data-
flow on distributed resources and orchestrates the event
transfer. While our definition makes no assumptions on the
runtime or scheduling, our techniques are well-suited for
dataflows executed in a single Cloud data center.

3.2 Equivalence

Similarity between Tasks. Saywe have two concrete tasks ti and
tj. They are said to be type-similar if ti:type ¼ tj:type, and

denoted as ti �
T
tj. They are said to be config-similar if they are

type similar, and also ti:config ¼ tj:config, shown as ti �
C
tj.

The tasks are said to be identical if ti:id ¼ tj:id, and given as
ti ¼ tj. Being identical implies that these are the same tasks,
and so are config similar too.

Parent of a Task. For a dataflowDhT; Si, we define a parent
function, pD : T! P ðTÞ, that takes a task as input and
returns its parent set, which is the set of tasks that are its
immediate upstream predecessors in the DAG. The
function’s range is the power set P of all tasks. There are no
parents for the input task(s) to the dataflow. For t 2 T,

CHATURVEDI ET AL.: COST-EFFECTIVE SHARING OF STREAMING DATAFLOWS FOR IOT APPLICATIONS 1393

Authorized licensed use limited to: Indiana University. Downloaded on June 05,2024 at 18:28:07 UTC from IEEE Xplore. Restrictions apply.

pDðtÞ ¼

�
p j s 2 S; p 2 T;
p ¼ upðsÞ; t ¼ downðsÞ

�
if t 2 T n I

? if t 2 I

8<
: :

Ancestor Graph. An Ancestor Graph for a task in a dataflow
is a DAG formed from the task and all its ancestors, along
with the streams that connect these tasks within the original
dataflow. For a task t 2 T for a dataflow DhT; Si we have
the ancestor graph recurrence function, aDðtÞ ! AhT ;
S
 i j T � T; S

 � S, defined as,

aDðtÞ ¼ Ahftg; fs j s 2 S; downðsÞ ¼ tgi [
[

p2pDðtÞ
aDðpÞ:

Here, we include the current task and its incoming
streams in the ancestor graph, recursively apply the ances-
tor function on the parent set of the task and take the union
of the parent’s ancestor graph. This will recur till we reach
the DAG’s input tasks, which do not have input streams.
The union of two ancestor graphs AihTi; Sii and AjhTj; Sji is

AkhTk; Ski ¼ Ai [Aj ¼ hTi [Tj; Si [Sji:

The ancestor graph for a task indicates the operations that
were performed on one or more input tasks of the DAG to
derive the input streams to the task. It is similar to the prospec-
tive provenance of the events generated from that task [22].
Each ancestor graph is connected and forms a DAG. Every
task in the dataflow has a unique ancestor graph, and it con-
tains at least one of the input tasks to that dataflow. In a data-
flow with a single sink task, the ancestor graph of the sink
task is the entire dataflow.

Maximal Ancestor Graph Set. The ancestor graph set, A, for a
dataflowDhT; Si is given by, A ¼ faDðtÞ j t 2 Tg.

An ancestor graph AjhTj; Sji is said to be a sub-ancestor of

another ancestor graph AihTi; Sii if Tj � Ti and Sj � Si, and

we say that Aj � Ai. The function V gives the maximal ances-

tor graph set, bA, for a given dataflow which is the ancestor
graph set that only has ancestor graphs that are not sub-
ancestors of any other ancestor graph in that dataflow.

bA ¼ VðAÞ ¼ fA jA 6� A0; A;A0 2 Ag:

Intuitively, the number of ancestor graphs in the maximal
ancestor graph set equals the number of sink tasks in that
dataflow. This is because the sink being the most down-
stream of the tasks in the DAG will not appear in any other
ancestor graph besides its own. It will also have the most
number of tasks in its ancestor graph.

Task and Ancestor Graph Equivalence. If we have AihTi; Sii
and AjhTj; Sji as the ancestor graphs for tasks ti; tj 2 T in a

dataflow DhT; Si, we say that the ancestors graphs are equiva-
lent, denoted as Ai $ Aj, if there exist two bijective functions
� : Ti ! Tj and �� : Si ! Sj such that,

�ðt0iÞ ¼ t0j) t0i �
C
t0j j t0i 2 Ti; t

0
j 2 Tj; s

0
i 2 Si; s

0
j 2 Sj

��ðs0iÞ ¼ s0j) �ðupðs0iÞÞ ¼ upðs0jÞ; �ðdownðs0iÞÞ ¼ downðs0jÞ:

In other words, for each task in the ancestor graph of ti,
there should be a distinct task in the ancestor graph of tj

that is config-similar, and vice versa, and their input and
output streams should be incident on matching tasks.

Two tasks ti and tj are equivalent, denoted as ti $ tj if
their ancestor graphs are equivalent. The output streams of
such tasks are identical, and one task can replace the other.

De-Duplicated DAG (De-dup DAG). A De-Duplicated DAG
DhT; Si is one in which there exists no two task ti; tj 2 T

that are equivalent. Each dataflow submitted by the user for
execution should be a de-dup DAG.

Disjoint and Overlapping DAGs. Two dataflows DihTi; Sii
and DjhTj; Sji are said to be disjoint, denoted as DiÀDj, if
they do not share any equivalent tasks,

DiÀDj)6 9ti 2 Ti; tj 2 Tj j ti $ tj:

Disjoint dataflows have no tasks that are mutually reusable.
Dataflows that are not disjoint are called overlapping.

Ancestor Intersection of DAGs. We define the ancestor inter-
section of two DAGs, given as a function LðDi;DjÞ, as the set
of ancestor graphs for tasks in each of the DAGs that are
ancestor equivalent.Without loss of generality, we choose the
ancestor graph from the task in the first DAG for inclusion in
the intersection set. GivenDihTi; Sii andDjhTj; Sji, we have,

LðDi;DjÞ ¼ faDi
ðtiÞ j ti $ tj 8 ti 2 Ti; tj 2 Tjg:

The ancestor intersection of disjoint DAGs is an
empty set.

The maximal ancestor intersection finds the maximal set
from the returned set of intersecting ancestor graphs,

bLðDi;DjÞ ¼ VðLðDi;DjÞÞ:

This indicates the largest set of equivalent tasks in the two
dataflows, and is an upper bound on the reusable tasks.

3.3 Problem Definition

There are running DAGs executing in the DSPS, and a user
submits a DAG for deployment. Our goal is to optimize the set
of running DAGs after a submitted DAG is deployed, while
ensuring that the outputs from the running DAGs are indis-
tinguishable from those of all the submitted DAGs so far.
Usersmay also remove a DAG submitted previously, and here
too a similar optimization is required after removal, without
affecting the outputs of the remaining DAGs.

Formally, say we have a set of m disjoint and de-dup
DAGs, D ¼ fDihTi; Siig that are currently running, and
together represent a collection of n � m de-dup DAGs,
D ¼ fDjhTj; Sjig, that were submitted by users for deploy-
ment. The following two constraints hold for the system:

1) Sink Task Coverage. For each sink task tp in the data-
flows D submitted by the users, there exists some
equivalent task tq in the running dataflows D,

8tp 2 Oj; 9tq 2 Ti j tp $ tq: (1)

2) Task and Stream Minimization. The running dataflows
D must be disjoint and de-dup DAGs, and each task
tq and stream sr in them, must appear in the ancestor
graph for some sink task tp in the submitted data-
flows D,

1394 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 4, OCTOBER-DECEMBER 2021

Authorized licensed use limited to: Indiana University. Downloaded on June 05,2024 at 18:28:07 UTC from IEEE Xplore. Restrictions apply.

8tq 2 Ti; sr 2 Si 9tp 2 Oj j tq 2 Tp
 � ^ sr 2 Sp

where Aph Tp
 �

; Sp
 i ¼ aDj

ðtpÞ:
(2)

Here, the first constraint guarantees that the running data-
flows can produce the identical output streams as the submit-
ted dataflows. The second constraint ensures that there are
no more running tasks, and streams connecting them, than
what is absolutely needed to satisfy the first constraint. This,
coupled with the running dataflows being disjoint, ensures
that we execute the least number of tasks while maximizing
reuse. Given this, our problems are,

1) Merging DAGs. When a new de-dup DAG Dn is sub-
mitted by a user, update the set of running DAGs D
such that Constraints 1 and 2 hold for the new set of
submitted DAGs D [Dn, while ensuring that tasks
equivalent to the output tasks ofDn are present in D.

2) Unmerging DAGs. When a dataflow Dr 2 D that was
earlier submitted is now requested to be removed,
update the set of running DAGs D such that Con-
straints 1 and 2 hold for the remaining submitted
DAGs D nDr.

4 MERGING AND UNMERGING DATAFLOWS

4.1 Merging Algorithm

When a dataflow is submitted by the user, we need to check
if it overlaps with any running dataflow. If not, then there is
no possibility of reuse and the submitted dataflow has to be
run independently (Fig. 2, D1; D2). If there are overlaps
with one or more existing dataflows, we need to identify the
maximum overlapping tasks and streams that will be reused.
We should also locate the non-overlapping parts of the sub-
mitted dataflow that have to be run afresh, and connected
to the upstream tasks being reused.

Running dataflows are disjoint with each other, i.e., they
do not share any source tasks. A submitted dataflow with
multiple source tasks (and optionally their successors) that
are present in different running dataflows may reuse more
than one of them. In this case, these running dataflows will
be merged with the new dataflow’s non-overlapping tasks
and streams that are instantiated, and connected to form a
single running DAG (Fig. 2,D3).

We also need to identify the tasks in the running dataflow
that correspond to the sink tasks in the submitted dataflow to
provide as output to the user. This should be maintained for
all submitted dataflows even when we merge running

dataflows. Next, we detail these operations for merging a
submitted DAGwith running ones.

Algorithm 1.Merge Algorithm

1: procedureMERGEANDDEPLOY(DnhTn; Sni; D)
2: Add new DAG to set of submitted DAGs, D ¼ D [fDng
3: Identify DAGs Y � D overlappingwithDn, where

Y ¼ fDihTi; Sii j ti 2 Ti; tn 2 Tn;

tn:config ¼ SOURCE ^tn �
C
tig

4: if jYj ¼ 0 then
5: Deploy dataflowDn directly, and set D ¼ D [fDng.
" Construct overlapping DAGs to merge and reuse

6: Create merged DAGDmhTm; Smi, where

Tm ¼
[

DihTi;Sii2Y

Ti and Sm ¼
[

DihTi ;Sii2Y

Si

7: Find maximal ancestor graph set betweenDn andDm,bA ¼ bLðDm;DnÞ ¼ VðLðDm;DnÞÞ
8: Find task overlaps To betweenDn andDm, where

To ¼
[

AkhT

k; S

ki2bA
T

k

9: Find stream overlaps So betweenDn andDm, where

So ¼
[

AkhT

k; S

ki2bA
S

k

" Identify non-overlapping tasks in input DAG to include
10: Find non-overlapping tasks Tx and streams Sx, where

Tx ¼ Tn n To Sx ¼ S�x [Sþx
S�x ¼ fsn jupðsnÞ; downðsnÞ 62 Tog
Sþx ¼ fsn jupðsnÞ 2 To; downðsnÞ 62 Tog; 8sn 2 Sn

11: Add these tasks and streams to merged DAG,
DmhTm; Smi) Tm ¼ Tm [Tx; Sm ¼ Sm [Sx

" Perform deployment
12: Undeploy DAGs Di 2 Y and deploy merged DAGDm

13: Update set of running DAGs as D ¼ D n Y [fDmg
14: end procedure

Algorithm 1 formally describes these operations for
merging a newly submitted DAG DnhTn; Sni with the set of
currently running DAGs D. These are also illustrated with an
example in Fig. 2. Dataflows submitted by users are shown
in gray shaded box on the left side and the running data-
flows are in a dashed box on the right, along with the logical
time in circles going from top to bottom. The task label are
their type and a diamond if present (e.g., Task D^) shows
additional config.

Identifying Overlaps. In lines 3–5, we first identify running

DAGs Y ¼ fDig � D that overlapwith the input dataflowDn.
While we can test the ancestor equivalence for every pair of
tasks in the submitted DAG and the running ones, this is
costly. Instead, we prune this search-space to just consider
the running DAGs that share a source task with the input
DAG to ensure at least a minimal overlap. Note that an input
DAG can overlap with at most as many running DAGs as the
number of source tasks it contains. In contrast, running
DAGs that share no source task with the new DAG will be
disjoint with it. If there are no overlaps with running DAGs,
we go ahead and deploy the newDAG independently.

E.g., in Fig. 2, when dataflowD1 is submitted at time t1, it
is the first dataflow and there is no reuse possible. So it is
deployed and run as a new DAG, sd1, at time t2. Next, when
D2 is submitted at t3, it is compared with the running

Fig. 2. Example of dataflow submission andmerge.

CHATURVEDI ET AL.: COST-EFFECTIVE SHARING OF STREAMING DATAFLOWS FOR IOT APPLICATIONS 1395

Authorized licensed use limited to: Indiana University. Downloaded on June 05,2024 at 18:28:07 UTC from IEEE Xplore. Restrictions apply.

dataflow sd1 and there is no overlap even in any source tasks.
Hence,D2 is deployed as a new running DAG sd2 at t4with-
out any reuse.When dataflowD3 is submitted at t5, its source
tasks A and E respectively overlap with the two running
DAGs, sd1 and sd2. So we proceed to the subsequent steps
for doing amerge and reuse.

Merging and Reusing Overlaps. In case there are overlaps,
we construct a new merged DAG Dm from these overlapping
DAGs and the new one, in lines 6–9. We first create a merged
DAG Dm as the the union of all tasks and streams of these
overlapping DAGs Y. We then identify the prefix of the sub-
mitted DAG in this partially merged DAG by checking their
maximal ancestor graph set, bA. This set of disjoint and maxi-
mal ancestor graphs contain the set of tasks To and edges So
of the submitted DAG that are present in the overlapping
DAGs and can be reused.

E.g., in Fig. 2, when adding the DAG D3 having overlaps
with sd1 and sd2, the partially merged DAG initially con-
tains tasks A–H and their corresponding streams. Now, we
check the maximal ancestor graph between this and the
new DAG. This gives the overlapping tasks as A;B;E and
F , and streams as hA;Bi and hE;F i. So this subset of the
new DAG is already present and can be reused.

Including Non-Overlapping Tasks. Then, in lines 10–11, we
find the parts of the new dataflow that are not present in the
running DAGs, and have to be newly instantiated. This has
the set of new non-overlapping tasks to be created, Tx, and
the set of new streams Sx, which includes S�x that connect
tasks fully within the non-overlapping tasks, and Sþx at the
boundary between the reused tasks and non-overlapping
tasks down-stream. These new entities are added to the
merged DAGDm.

E.g., in Fig. 2, when adding the DAG D3, tasks D^ and I
are non-overlapping tasks that will be incrementally added
to the merged dataflow. Also, stream hD^; Ii which is fully
present in the new tasks, and streams hB;D^i and hF;D^i
that link the existing and the new tasks will be added as
well. These latter streams will pass through a broker-indi-
rection (shown with a �), as discussed in Section 4.3.

Deployment. Lastly, in lines 12–13, we replace the over-
lapping DAGs in Y with this newly merged DAG to get
the updated set of running DAGs, D. We also add the
user’s DAG to the set of submitted DAGs for book-keep-
ing, D. E.g., in Fig. 2, when adding the DAG D3, an incre-
mental dataflow sd3 containing the non-overlapping tasks
and streams is instantiated at time t6, and connected with
the existing dataflows sd1 and sd2 being merged. As we

discuss in the implementation, Section 4.3, starting an
incremental dataflow sd3 and linking it with existing
reused tasks through broker-based boundary streams min-
imizes the disruption, compared to stopping sd1 and sd2
and starting a single new merged dataflow that is com-
posed of sd1; sd2 and sd3.

Algorithm 2. Unmerge Algorithm

1: procedure UNMERGEANDREMOVE(DrhTr; Sri; D)
2: Find running merged DAGDi 2 D containingDr,

DihTi; Sii ¼ FðDrÞ
3: Find retained dataflows Ds supported by the DAGDi,

Ds ¼ DðDiÞ nDr

4: Find ancestor graph set A for the sink tasks of
retained dataflowsDkhTk; Ski 2 Ds, where

A ¼ fAs jAs ¼ aDk
ðtpÞ; 8tp 2 Tk; tp:config ¼ Sinkg

5: Find tasks to deactivate Td that do not appear
in ancestor graph set, where
Td ¼ ftq j tq 2 Ti; tq 62 Tp

 �
; Aph Tp
 �

; Sp
 i 2 Ag

6: Find streams to deactivate Sd that are incident on a
task from Td,
Sd ¼ fs j s 2 Si; upðsÞ ¼ t _ downðsÞ ¼ t; t 2 Tdg

7: Create an updated merged DAG DjhTj; Sji, from the

running DAGDi, where Tj ¼ Ti n Td and Sj ¼ Si n Sd.
8: Identify replacement DAGs Dm

j from the updated DAG Dj

as distinct maximal connected component.
9: Replace the running DAGDi with the replacements Dm

j

10: Update set of running DAGs, D ¼ D n fDig [Dm
j .

11: RemoveDr from set of submitted DAGs, D ¼ D n fDrg
12: end procedure

4.2 Unmerging Algorithm

Users can request a previously submitted dataflow for
removal, and this request can come in any arbitrary order,
irrespective of the order of the dataflow’s submission.When a
removal request arrives, we need to first identify the single
running (possibly merged) DAG that contains this dataflow.
We then determine the tasks and streams in this running
DAG that can be removed such that the correctness of the
remaining submitted dataflows is not affected. This may
cause some tasks in the running DAG to be deactivated
(Fig. 3,D2), or a singlemergedDAG to be unmerged intomul-
tiple DAGs if the components get disconnected (Fig. 3,D3).

Algorithm 2 describes the algorithm to unmerge and
remove a given DAG Dr. Fig. 3 illustrates this with exam-
ples, and these resume from the end state of Fig. 2 where
dataflowsD1; D2 andD3 form a single logical merged DAG
consisting of sd1; sd2 and sd3. The logical time in circles
goes from left to right.

Let D : D! P ðDÞ be a decomposition function that maps
from a running merged DAG to a set of submitted DAGs it
supports, where P is the power set. Similarly, let F : D! D

be an inverse mapping function that given a submitted DAG,
returns the running merged DAG that it is contained in.
These functions are maintained as part of the merge algo-
rithm. When a DAG, Dr 2 D is being removed, in lines 2–3,
we first identify the single running DAG that contains this
dataflow, Di ¼ FðDrÞ. From this, we can identify the set of

dataflows Ds ¼ DðDiÞ nDr that will be retained, and continue

to be supported by Di, even after the removal of Dr. It is

Fig. 3. Example of dataflow unmerge and removal.

1396 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 4, OCTOBER-DECEMBER 2021

Authorized licensed use limited to: Indiana University. Downloaded on June 05,2024 at 18:28:07 UTC from IEEE Xplore. Restrictions apply.

possible that the removed DAG was the only one supported
by this merged DAG, and no dataflows are retained.

E.g., in Fig. 3, when we remove D2 at time t7, this is con-
tained in the running merged dataflow logically formed
from sd1; sd2 and sd3. Since this merged dataflow also con-
tains the submitted DAGs D1 and D3, they must continue
to be supported afterD2 is removed.

Next, in lines 4–6, we identify the subset of tasks Td and
streams Sd in the running merged DAG that must be deacti-
vated. These tasks will not appear in the ancestor graph of
any of the retained dataflows Ds. Specifically, we find the
ancestor graphs A for the sink tasks of these retained DAGs,
and find tasks Td that are not present in this ancestor set.
Similarly, we find streams Sd to be disconnected as ones
incident on any of these tasks being deactivated.

E.g., in Fig. 3, when we remove D2, the sink tasks of the
retained DAGs D1 and D3 are D^ and I. The ancestor
graph for these tasks do not contain the tasks G and H, and
these can be deactivated. Similarly, the streams hF;Gi and
hG;Hi connected to these two tasks can be removed.

In lines 7–8, we logically remove these deactivated tasks
and streams from the running merged DAG Di to form an
updated merged DAG Dj. However, this can cause the
merged DAG to get disconnected into separate DAGs as the
removed DAGmay have served as the link between different
components. So we identify the maximal connected compo-
nent(s) Dm

j that are present in this updated DAG Dj. This is
done through a forward traversal from each source task in the
retained DAGs. The upper bound on the resulting number of
unmergedDAGs is the number of source tasks in the dataflow
being removed – this is a corollary to themerge operation that
can atmost cause thesemanyDAGs to bemerged.

E.g., in Fig. 3, when we remove D2, the remaining tasks
continue to form a single connected component. However,
instead, ofD2, if wewere to removeD3 (example not shown),
then tasksD^ and I and their incident edgeswould be deacti-
vated. Thiswould create twomaximal components that corre-
spond to sd1 and sd3, and would form two unmerged DAGs
that remain.

Lastly, we replace the single merged DAG Di with zero
(if the DAG being removed is the only one supported by the
merged DAG) or more merged DAGs in Dm

j . We also update
the set of running and merged DAGs. In practice, as we
describe in Section 4.3 for our Apache Storm implementa-
tion, we may pause the relevant tasks and streams rather
than disconnect and remove them from the merged DAG to
avoid interruption.

E.g., in Fig. 3, whenwe removeD2, we pause tasksG andH
(shaded in gray), and stop sending events on the stream hF;Gi
from task F . sd1; sd2 and sd3 are form the logical merged
DAG continue to remain running. Subsequently, when we
removeD3 at time t9, tasks E;F;D^ and I are paused. While
sd1; sd2 and sd3 remain deployed, only tasks from sd1 are
active and support the retained dataflowD1.

4.3 Implementation

We develop a Dataflow Reuse Manager that offers a generic
implementation of the merge and unmerge algorithms, with
bindings to the Apache Storm DSPS to enact the dataflows and
coordinate their reuse. Fig. 4 shows the major architectural
components. Users submit a dataflow to our ReuseManager as

a JSON file which captures the DAG, including the task ID,
type, config and connectivity. The Reuse Manger tracks the
state of the submitted and running DAGs. It runs the merge
algorithm to identify running DAGswhich can be reused and
merged to support the submitted dataflow, and new tasks
and streams to be created. The discrete algebra definitions for
the algorithms are translated into efficient graph-based imple-
mentations. We also perform book-keeping to maintain the
mappings between submitted andmergedDAG, the paused/
active states of tasks, and the broker-indirection of streams.

A Reuse Plugin translates these operations for a specific
DSPS. An Storm cluster consists of a Manager and several
Workers running on different VMs. EachWorker is a JVM that
executes one or more tasks from the same DAG concurrently,
and is typically assigned one CPU core. A DAG is assigned a
specific number of workers on launch, and its tasks placed in
a round-robin manner on these. We allocate n

p workers to a
dataflow, where n is the number of tasks and p is the packing
factor – the concurrent tasks per slot. We use Storm’s Flux
JSON interface to create and launch dataflows.

DSPS like Storm do not allow the DAG structure to be
modified after launch, instead requiring it be stopped and a
new one launched with the updated structure. This will be
disruptive to all dataflows reusing a running DAG, and will
affect IoT applications that are latency sensitive. Instead, we
develop a mechanism to run the merged dataflows as par-
tial DAGs that can be incrementally launched, and use a
publish-subscribe broker to externally connect them.

When the manager identifies multiple running dataflows
to bemerged (Y) and new non-overlapping tasks and streams
to be created (Tx; Sx), it takes the following steps. It first
launches a new dataflow corresponding to the non-overlap-
ping tasks and their local streams, hTx; S

�
xi. Further, for each

boundary stream being reused from an existing dataflow
(Sþx), a proxy task is included in the new dataflow to subscribe
to the broker, and receive the remote events.

For this, each task in the Storm dataflow extends our
wrapper class, which subscribes to a unique control topic on
the broker. The Reuse Manager uses this topic to notify a
task in a running DAG to forward a copy of its output stream
to a unique data topic, which is subscribed to by the proxy
task in the new DAG. Thus, the topic is a derived stream to
connect tasks in different Storm dataflows being merged.

E.g., in Fig. 4, the single running merged dataflow consists
of two Storm DAGs, sd1 and sd2 that are connected through
the SD1:B:Data topic. Task B of sd1 publishes its output
stream to this topic, while B0 in sd2 acts as a proxy task that
subscribes to it, and forwards the received events to E. The
control topic to which each task subscribes is used to signal
the start/end of publishing the output stream.

Fig. 4. Dataflow reuse architecture using apache storm.

CHATURVEDI ET AL.: COST-EFFECTIVE SHARING OF STREAMING DATAFLOWS FOR IOT APPLICATIONS 1397

Authorized licensed use limited to: Indiana University. Downloaded on June 05,2024 at 18:28:07 UTC from IEEE Xplore. Restrictions apply.

Similarly, when a dataflow removal causes a running
merged dataflow to be unmerged, the algorithm first identi-
fies tasks and streams to deactivate, hTd; Sti. This will be in a
singlemergedDAG, butmay spanmultiple StormDAGs con-
nected by the broker. The ReuseManager does the book-keep-
ing. The tasks to be deactivated may require termination of a
subset of a running DAG,which Storm disallows. Instead, the
Manager signals these tasks to instead pause their execution,
using the control topic. These tasks will not process future
incoming messages, which in effect, frees up the resources of
those tasks without disrupting the DAGs they belong to. E.g.,
tasksC andD in sd1 have been paused.

This approach can introduce latency overheads due to the
indirection in forwarding events between tasks through the
broker. But it does not limit scaling since modern brokers
like Kafka are designed for distributed scaling. A bigger
concern is the fragmentation caused by repeated merge/
demerge. This can result in many small Storm DAGs to sup-
port a few large merged DAGs, and numerous proxy and
paused tasks. These affect the resource usage. Next, we dis-
cuss defragmentation strategies to address these concerns.

5 DATAFLOW DEFRAGMENTATION

Frequently adding and removing overlapping DAGs can
cause many fragmented DAGs to be running, even as they
are part of a few logical merged dataflows. This design
avoids stopping and starting DAGs repeatedly to modify
their structure. However, it results in three types of over-
heads. One, for each stream from a running DAG being
reused by a new DAG (Sþx), a proxy task uses additional com-
pute resources, besides contributing to the latency through
broker indirection (Fig. 4, B0). Two, paused tasks in a merged
DAG consume incremental computing resources (Fig. 3, t10
with 6 tasks). Lastly, the Storm only allows tasks from a sin-
gle DAG to be hosted in a worker, which can cause poor bin-
packing efficiency of tasks from many DAGs to workers.

Defragmentation (defrag) is an approach to consolidate a sin-
gle merged dataflow that is fragmented into DAGs, or has

paused tasks within it, and addresses these short-comings.
We propose two defragmentation approaches.

Merge and Replace (MR). In this, we consolidate all DAGs
that are part of the same merged dataflow but are running as
separate instances in the DSPS, into a single DAG. We first
identify all the running component DAGs for a merged data-
flow, terminate them, create a single DAG instance, and rede-
ploy the new DAG. This will retain all tasks and streams in
the original set of DAGs, except for the proxy tasks that linked
them through the broker. The dataflow will include any
paused tasks that were present. So this defragmentation is
beneficial only when dataflows are added, and avoid creating
smaller DAG fragments, but not when dataflows are removed
since deactivated tasks continue to remain, in the paused state.

Here, we reclaim resources used by the proxy tasks,
avoid the latency due to stream indirection between DAGs,
and can achieve better packing of tasks to workers. By
retaining the paused tasks, we pay incremental overheads
for them even as they are not executing. As a minor benefit,
we reduce the time to deploy an earlier DAG that was ter-
minated and resubmitted, since we just need to unpause the
tasks (faster) than defrag and deploy a new DAG (slower).

Merge, Prune and Replace (MPR). This extends the above
approach. In addition, it prunes the paused tasks in the DAG
instances before deploying the single DAG that exactly
matches merged dataflow. Hence, the number of tasks in the
new DAG will reduce by the number of proxy tasks and the
paused tasks present earlier. This defrag approach is relevant
both when adding and removing dataflows since removal
can result in paused tasks, which this avoids. Besides the ben-
efits of MR, MPR also eliminates the resources used by the
deactivated tasks and improves the packing efficiency even
more. It does lose the ability to rapidly unpause tasks when
an earlier dataflow is resubmitted.

Fig. 5 shows the behavior of MR and MPR, correspond-
ing to time t5 in Fig. 2 when D3 is submitted for reuse.
Unlike the reuse approach without defragmentation, which
we term RU, we see that both MR and MPR consolidate the
dataflows sd1 and sd2, along with the new tasks and
streams for D3, into a single DAG sd3 that is deployed at t6.
There are no proxy tasks and broker indirection.

Similarly, Fig. 6 shows dataflow D2 being removed at t7
with MR and MPR, similar to the RU approach in Fig. 3.
Here, MR pauses the tasks G;H at time t8, similar to RU,
while otherwise not changing the running DAG sd3. MPR
removes these tasks and deploys a new pruned DAG sd4
that exactly matches the merged dataflow.

The relative benefits of the two defrag approaches, rela-
tive to RU, are summarized in Table 1. At the same time,
there is also cost associated with performing the defragmen-
tation. This is primarily in the form of the redeployment
latency for draining events from the dataflow(s), stopping

Fig. 5. Example of defrag on dataflow submission.

Fig. 6. Example of defrag on dataflow removal.

TABLE 1
Cost-Benefit Matrix for Defragmentation

Metric Reuse MR Defrag. MPR Defrag.

Defrag. Overhead + " *
Slots Used " # +
DAG Latency " # #
Speed of Resubmit " " #

1398 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 4, OCTOBER-DECEMBER 2021

Authorized licensed use limited to: Indiana University. Downloaded on June 05,2024 at 18:28:07 UTC from IEEE Xplore. Restrictions apply.

them, and starting a new dataflow with the merged/pruned
tasks. This is a one-time cost at the time of defragmentation,
while the benefits listed above accumulate over time as the
DAGs continue to run. Since streaming applications are typ-
ically time-sensitive, this redeployment time due to defrag
needs to be offset by adequate benefits.

E.g., the median time taken to deploy a dataflow in Storm
is 40:4 secs, and for stopping a dataflow is 9:4 secs, based on
experiments we describe later in Section 7. We leave it to
users to determine when to initiate a defrag, but one can
define a utility function that trades-off the time cost of defrag-
mentationwith its resource benefits to decidewhen to defrag.
This decision is also affected by the order in which the data-
flow submissions and removals arrive as the benefits of
defrag accrue over time.

6 PROPORTIONAL BILLING

The advantages of reusing dataflows is evident when run-
ning the DSPS on elastic Cloud resources. The pay-as-you-
go model of Cloud VMs at fine billing granularities of
minutes or seconds, combined with their on-demand acqui-
sition and release, helps shape the resource cost paid. One
can conceivably have a DSPS PaaS provider that supports
reusable DAGs, and in turn intelligently uses IaaS VMs to
run the DSPS workers and the merged dataflows. Here, we
examine a proportional billing model for assigning costs to
the submitted dataflows for their usage of shared resources.

We consider several practical factors in this billing calcu-
lation. IaaS providers charge for a VM that is acquired, irre-
spective of its utilization. This means that depending on the
number of workers in a VM, and the packing of tasks into a
worker, the cost incurred per task can vary. Cloud pro-
viders also have a billing granularity which determines the
smallest unit of time that the VM is charged for. Billing per-
minute has been common but recently, providers like Ama-
zon AWS, Microsoft Azure and Google Compute have
moved to a per-second billing for VMs. An active task run-
ning on a worker may be reused by more than one submit-
ted dataflow, and its costs attributable to more than one
user. Here, we offer a billing model to estimate the propor-
tional cost per submitted dataflow of a user, under such a
reuse scenario.

Say we have a billing interval of d for VMs, and a cost of
gr for a VM that can run rworkers on it, with equal resource
capacity each. For simplicity, we do not differentiate the
quantum of actual CPU, memory, etc. resources consumed
by a task within a worker. Let the dataflows be submitted
only at integer increments of d. At a given time u that is a
multiple of d, let Vu ¼ fvig indicate the set of n VMs that
have been acquired for the DSPS cluster, and Wu ¼ fwj

ig be
the set of

P
i2n ri workers on those VMs, where VM vi has ri

workers. Let the set of active tasks deployed on those work-
ers at time u be given by Tu ¼ ftkg, and the (merged) DAGs
running at that point in time be Du ¼ fDlg.

Say, we have a mapping function from each task to the
worker it is executing on, Wu : Tu !Wu, and similarly its
inverse mapping function, Wu : Wu ! Tu, from the worker
to all tasks placed on it. Let another function give the map-
ping from a task to all the DAG(s) that are (re)using it,
Du : Tu ! Du, which, from the prior definitions, is,

DuðtkÞ ¼ ftj j tj $ tk; tj 2 T0u; D
0
uhT0u; S0ui 2 Dug:

All of these are available to the Reuse and DSPS Managers.
With these, we can calculate the proportional cost for exe-
cuting a dataflow D0u 2 Du having tasks T0u as follows. The
cost gr paid in interval d for a VM is proportionally divided
among all active workers on that VM, where an active worker
is one which has at least one active task placed within it. All
these tasks equally share the cost of that worker. The task
itself may be shared by multiple DAGs, and all those data-
flows equally share the cost paid for this task. Based on this,
we calculate the incremental cost for a task tk 2 T0u mapped to
worker wj

i ¼ WuðtkÞ at time interval u as:

ck ¼
gri

r�i 	 jWuðwj
iÞj 	 jDuðtkÞj

;

where vi is the VM onwhich the task is runningwith a capac-
ity for ri workers, gri is the cost of this VM for every d, and r�i
is the actual number of active workers in that VM. jWuðwj

iÞj is
the number of active tasks present on that worker, and

jDuðtkÞj is the number of dataflows reusing this task. Hence,

the cumulative cost for all tasks of the DAG D0u for the time

interval ½u; u þ dÞ is
P

tk2T0u
ck, and this may change in the next

interval based on the DAGs that are submitted, removed and
defraged. The total cost for a dataflow is the sum of all d inter-

vals it stays submitted for.
E.g., say we have a VM type that can run 2 workers on it,

and costs g2 ¼ 1¢ per minute, using a d ¼ 1 min billing int-
erval. Let each worker be able to run 2 tasks within it. Say,
when we submit DAGs D1; D2 and D3 in Fig. 2, the tasks
get mapped to 3 different VMs, v1; v2 and v3, and on 5 work-
ers w1

1; w
2
1; w

1
2; w

2
2 and w1

3 present in them – 2 workers each in
the first 2 VMs and 1 worker on the third VM. Let the
worker to task mapping Wu at the end of time t6 be
w1

1 : A;B; w2
1 : C;D

^; w1
2 : E;F ; w2

2 : G;H and w1
3 : D

^; I.
Now, the cost per minute for task A is cA ¼ 1 ¢

2	2	2, since its

VM v1 has 2 workers (w1
1; w

2
1), its worker w1

1 runs 2 active
tasks (A;B), and this task A is shared by 2 DAGs (D1; D3).
Similarly, the per-minute cost for task C it is cC ¼ 1 ¢

2	2	1, and
for task I it is cI ¼ 1 ¢

1	2	1. These costs per task can then be
summed up to estimate the cost of each DAG.

7 EXPERIMENTS

Our experiments are designed to evaluate the relative bene-
fits of the merge and demerge algorithms that enable reuse of
overlapping dataflows, compared to the default configura-
tion where no reuse is exploited (Section 7.2). To this end, we
use multiple dataflow workloads (Section 7.1.1), and different
traces for how these dataflows are submitted and removed to
the DSPS, across time (Section 7.1.2). The quantitativemetrics
we report are the number of active tasks over time as dataflows
are submitted and removed (Section 7.2.1), its consequence
on the CPU utilization within the machines (Section 7.2.2),
and insights into how often tasks get reused (Section 7.2.3).

In addition, we also validate the benefits of our MR
and MPR defragmentation strategies in mitigating the effects of
tasks that are paused but not removed (Section 7.3). Here,
the metrics evaluated are the relative number of workers used

CHATURVEDI ET AL.: COST-EFFECTIVE SHARING OF STREAMING DATAFLOWS FOR IOT APPLICATIONS 1399

Authorized licensed use limited to: Indiana University. Downloaded on June 05,2024 at 18:28:07 UTC from IEEE Xplore. Restrictions apply.

(Section 7.3.1), the reduction in the worker count (Section 7.3.2)
and the latency to perform the dataflow submission or removal
operation (Section 7.3.3). Lastly, we also compare the propor-
tional billing costs for the various strategies (Section 7.4).

7.1 Experiment Setup

7.1.1 Dataflow Workload

We use two dataflow workloads in our evaluation. One is from
the Open Provenance Models for Workflows (OPMW) reposi-
tory [21] which hosts ontology-based scientific workflow
DAGs. These DAGs describe the structure with the task types
and stream connectivity, which are adequate to identify reus-
ability, but lack the tasks’ executables for actually invoking
the science logic. These workflows span different domains,
and are shared publicly by the science community. As there
are few openly available streaming IoT dataflows, these
OPMW workflows are a proxy for future collaboratory IoT
dataflow collections and indicative of the overlaps likely to
occur within public IoT repositories. Of the 74 usable work-
flows in the repository, we pick 65 that can run within the
resources available in our Storm cluster. In the absence of the
original task executables for these worfklows, we instead
use Vi�ete’s numerical p computation over 1600 iterations as
the uniform compute-intensive logic for all these tasks. This
ensures that each input event triggers a CPU-intensive opera-
tion rather than a trivial sleep.

The secondworkload is based on real IoT applications that
are part of our Real-time IoT Benchmark (RIoTBench) [16], based
on a smart utility project [26]. It has 27 IoT tasks with their
associated execution logic, and 4 streaming IoT dataflows for
performing Extract-Transform-Load, Statistical Summariza-
tion, Predictive Modeling and Analytics. We permute these
datflows with these tasks to get 21 unique DAGs composed
from 16 real task logic. So these are based on real IoT composi-
tions and user logic, with the overlaps expectedwithin shared
IoT repositories being simulated. They use 3 IoT source task
streams – Smart Grid, Urban Sensing, andNY Taxi Cab.

Table 2 shows statistics on these dataflow collections. We
see that OPMW has more diverse DAG sizes and structure
with 3
 34 tasks per DAG, 82 distinct source tasks, and 291
unique tasks that influence reuse. The peak selectivity of 10
implies that the output DAG rate can be 10	 the input rate.
RIoT has 138 total tasks over 21 DAGs, with more similar

sizes of 4
 8 tasks. But all 16 unique tasks implement real
IoT logic. An extra sink task that connects to all sinks of the
DAGs is used to collect performancemetrics.

We use an input rate of 5 events=sec for each OPMW
source task. This rate can be amplified 10	 downstream due
to their high selectivity, and helps us staywithin the available
resources at the peak rate. For RIoT, we support a higher
event rate of 100 events=sec due to the smaller DAGs. Events
are 4–380 bytes in size, based on the source.

7.1.2 Dataflow Traces

We generate 3 DAG traces each for the OPMW and RIoT data-
flows to simulate submission and removal. For one trace, we
use a Sequential Submit/Remove (SEQ)model to first incremen-
tally submit a random dataflow from the workload with uni-
form probability, without replacement, in each time step.
Once all DAGs in the workload are added, we switch to a
remove phasewhere a randomDAG that is present is removed
in each step. This takes 65	 2 ¼ 130 steps for OPMW and
21	 2 ¼ 42 for RIoT. This trace simulates the behavior when
only add or remove operations occur; the maximum reuse
happenswhen all DAGs are submitted.

For the two other traces, we generate two Random Walks
(RW) where we perform an add or a remove with equal
probability at each time step, and repeat this 100 times. The
DAGs to add/remove are chosen at random from the avail-
able/submitted pool – a submitted DAG is not resubmitted
(unless removed) to avoid the whole DAG being reused by
our algorithm to unfairly inflate its benefits. We initially
populate the system with 40 DAGs for OPMW and 15
DAGs for RIoTBench at random, which form � 2

3

rds
of the

available dataflows, before the 100 random walk starts, and
similarly drain the DAGs after the walk. This evaluates the
system performance with repeated merge and unmerge.

7.1.3 System Setup

We run our experiments on Apache Storm v1.0.2 DSPS that is
setup on a commodity cluster, with each node having an
AMD Opteron 3380 8-core CPU@2.6 GHz, 32 GB RAM, a
256 GB SSD, andGigaBit Ethernet, running CentOS v7. Storm
runs on JRE v1.8 with the Flux JSON interface used for data-
flow submission, and logging enabled for capturing metrics.
Apache Apollo v1.7.1 is our publish-subscribe broker using the
MQTT protocol. Our Manager is implemented in Java and
talks to Storm from a local node. We retain Storm’s defaults
of 1 worker (JVM) per core, 1 thread per task, and the round-
robin scheduler.We see that up to p ¼ 8 tasks can run concur-
rently on a worker without interference, allowing us to run
up to 64 tasks per node. However, each Storm worker can
have tasks from only one DAG. The Storm cluster is assigned
as many nodes as required at the peak of a given trace, and
this ranges from 3–16 machines. An operation step in a trace –
DAG submission or removal – is generated at a 1 min inter-
vals to let the system and resource usage stabilize. Each trace
takes 42–180 mins to run.

7.2 Results for Dataflow Reuse (RU)

7.2.1 Number of Active Tasks

Wecapture variousmetrics from executing these DAGs based
on the traces on a Storm cluster. Fig. 7 shows the number of

TABLE 2
Dataflows Used in Workload

Properties OPMW RIoT

Total # of Dataflows 65 21
Total # of Tasks 828 138
Total # of Edges 824 126
Unique Tasks 291 19
Unique Source Tasks 82 3
Unique Task Logic Implemented 1 16
Minimum Tasks in a Dataflow 3 4
Maximum Tasks in a Dataflow 34 8
Average Tasks in a Dataflow 12 6
Minimum Edges in a Dataflow 2 6
Maximum Edges in a Dataflow 34 7
Average Edges in a Dataflow 12 6
Maximum Dataflow Selectivity 10 2

1400 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 4, OCTOBER-DECEMBER 2021

Authorized licensed use limited to: Indiana University. Downloaded on June 05,2024 at 18:28:07 UTC from IEEE Xplore. Restrictions apply.

active tasks on the Y axis as the operation steps (logical time)
increases along the X axis, for the default No Reuse (NRU)
and the Reuse (RU) approaches. These exclude inactive and
proxy tasks. The active task count should be lower when
reuse occurs, and this indicates that we have avoided redun-
dant computation.

In the OPMW SEQ trace Fig. 7a, there is a modest differ-
ence initially between NRU and RU, until step 20 where the
NRU approach has 273 active tasks while our RU has 207.
Submitting only a few DAGs from a large population limits
their overlaps. However, as more dataflows are added till the
peak of 65 DAGs, we see the difference widen to 828 active
tasks for NRU and only 467 tasks for RU. This difference at
the peak highlights the maximum possible reuse being
exploited when all dataflows are submitted. In the drain
phase, the gap stays wide since the random sampling hap-
pens to remove DAGs with less reuse first. Overall, we see an
average reduction of 34 percent in active task count using the reuse
strategy, with a peak reduction of 44 percent tasks.

A similar pattern of active task counts is observed for
OPMW’s Random Walk traces (RW1, RW2) in Figs. 7b and 7c.
The first and last 40 steps are the submit and drain phases,
and the 100 steps from 41–140 form the random walk. In
RW1, we see the task count at 551� 14% for NRU while is
only 346� 13% for RU during the 100 steps of the random
walk phase. The matching numbers for RW2 are 501� 21%
for NRU 314� 19% for RU. RW2 has more variability in the
active task counts as a consequence of the random sampling.
There are � 40 dataflows that are running at any time. This
trace too exhibits an average reduction in tasks count of about 37
percent with reuse, and is also more representative of reality.

For the SEQ trace of RIoT dataflows, we see a similar gap
between the active task counts for the NRU and RU (Fig. 7d).
From steps 5–21, the active tasks for NRU grows from 33–138
while the growth is muted for RU at 26–75 tasks. The average
task count drop of RU fromNRU is 38 percent, with a peak of
46 percent. For the two random walks of RIoT, the 100 steps are
sandwiched between the 15 submit and drain steps at the
start and end (Figs. 7e and 7f). Like OPMW, the active tasks are
fewer for RU relative to NRU with a mean drop of 44–45 percent
for the two traces. The task count variability is also smoother
for RU, avoiding sudden spikes in the deployment. Nearly 15
dataflows remain deployed during the random walk. RW1

has a count of 125� 25% and 69� 20% active tasks for NRU
and RU,while RW2 has 110� 25% and 62� 16% tasks.

7.2.2 Cumulative CPU Utilization

We correlate the active task count with the matching CPU
usage, which is the actual resource consumed with reuse.
Fig. 8 shows the cumulative cores used, which is the sum of the
CPU utilization (0.0–1.0, per core) on each active host in the
Storm cluster; a value of 1.0 implies 100 percent use of 1 core.
We see a strong correlation between Figs. 7 and 8, with a cor-
relation coefficient of r > 0:9 in all but 2 of the 12 pairs of
plots – RIoT RW1 with reuse and RIoT RW2 with no reuse.
OPMW’s SEQ trace has a core usage that grows and shrinks,
but has a flatter resource usage for RU compared to its
sharper slopes for the task count. The peak resource reduction is
also higher than the task count drop, with RU taking 48 percent
fewer CPU resources thanNRU; the mean reduction is 31 percent.

When the dataflows are drained, the core usage drops for
both approaches. It reaches 0 for NRU at the end. But, the
usage for RU does not reach 0 since 467 tasks that were run-
ning are now paused, using 11 cores. Step 112 sees a cross-
over where NRU uses 15 cores and RU 19 cores, even though
RU has fewer active tasks. Since the cores used impacts VM
billing, this motivates the need to defragment. The cores used
by OPMW’s Random Walk traces (Figs. 8b and 8c) match the
active task count during the 100 steps. NRU’s cores used is
44� 15% and 45� 21% for RW1 and RW2, while RU’s usage is
much lower at 24� 11% and 26� 16%. Here too RU uses 12
cores after all DAGs are drained.

Unlike OPMW DAGs whose tasks all run p compute, the
RIoT workload’s IoT tasks are heterogeneous, with varying
compute, memory, I/O and network use. This diversity is
reflected in the resource usage of its traces. Fig. 8d shows the
cores used by RIoT’s SEQ trace. We see a linear increase and
decrease in cores used as seen in tasks count, but with the
slopes changing occasionally to reflect the variable resource
costs for the tasks. The resource reduction for RU at the peak sub-
mission is 35 percent below NRU with an average reduction of 29
percent.

For the RW1 and RW2 traces of RIoT (Figs. 8e and 8f), the
cores used during the 100 random add or remove operations
using NRU is 16� 36% and 14� 39%, and using RU is lower
at 6� 41% and 8� 19%. RW1 and RW2 have a poor

Fig. 7. Number of active tasks across operation steps for the 6 traces, with NoReuse (NRU) and Reuse (RU) approaches.

Fig. 8. Cumulative Cores Used across operation steps for the 6 traces, with NRU and RU.

CHATURVEDI ET AL.: COST-EFFECTIVE SHARING OF STREAMING DATAFLOWS FOR IOT APPLICATIONS 1401

Authorized licensed use limited to: Indiana University. Downloaded on June 05,2024 at 18:28:07 UTC from IEEE Xplore. Restrictions apply.

correlation between task counts and CPU use, with r ¼ 0:52
for RW1 RU and r ¼ 0:85 for RW2NRU, due to diverse tasks.
All three of these traces have 2–4 core usage due to paused
tasks, even after all DAGs are drained.

7.2.3 Frequency of Task Reuse

Lastly, we examine the frequency of task reuse for the different
workloads and traces using RU. Ths helps us understand
howmany DAGs share a reused task. Fig. 9 shows the histo-
gram of the time-weighted fraction of all running tasks over
all steps (Y axis) that were reused by ½1; 2Þ DAGs, ½2; 3Þ
DAGs, etc. (X axis). We omit the frequency of tasks used
just once, which is the residual of all these frequencies.

OPMW’s SEQ trace has an average of 20 percent of all run-
ning tasks reused by > 1 and� 2 dataflows during the trace,
with another 13 percent reused by [2,4) dataflows (Fig. 9a).
The reuse fraction is marginally lower for its RW1 and RW2
traces, with nearly 16–18 percent of task being reused by [1,2)
dataflows, while another 12 percent are reused by [2,4) data-
flows. For � 1% of tasks, as many as 10 dataflows share them in
all traces.

RIoT’s SEQ, RW1 and RW2 traces in Figs. 9d, 9e, and 9f
show 20 percent of active tasks reused by > 1 and � 2 data-
flows, and the reuse is above 5 percent even until 6 tasks. In
RIoT, there are only 3 unique input tasks while OPMW has
82. As reuse requires the prefix sub-DAG to match, RIoT
has a greater chance of its source and even 1–2 subseq-
uent tasks often being common across dataflows. Overall,
32 percent of tasks are reused by more than 1 dataflows in all three
of its traces.

7.3 Results for Defragmentation (MR, MPR)

Given the complexity of implementing the defragmentation
strategies in Storm, we instead run simulations to under-
stand the benefits and costs of these strategies. We use run-
time metrics from real runs from the above setup for these
simulation runs, and replicate Storm’s round-robin schedul-
ing strategy of tasks to workers.

7.3.1 Number of Workers Used

Fig. 10 shows the cumulative workers used on the Y axis over
different steps of the trace for: without reuse (NRU), with

reuse but without defrag (RU), and with reuse and defrag
using MR and MPR. This indicates the number of VM-cores
that are allocated by Storm’s scheduler, in contrast to the
measured core usage in Fig. 8. The scheduler may over-allo-
cate, causing lower usage, and this would motivate smarter
DSPS scheduling strategies for better worker utilization [27],
[28]. For MR and MPR, the defrag is done after every DAG
submission or removal operation.

When we compare the worker allocation for the NRU
approach with the core usage, it matches (e.g., RIoT SEQ
with 21 workers allocated and 17 cores used at the peak) or
is higher (e.g., OPMW SEQ with 124 workers allocated but
only 60 cores used at the peak), but otherwise has a similar
trend between Figs. 8 and 10. More pertinent is the worker
allocation for RU that increases or stays the same (Fig. 10) when
submit or remove operations are performed, even though the core
usage drops on DAG removal (Fig. 8). This is a consequence of
the tasks being paused and not terminated when a dataflow
is removed, thus taking up whole workers and also partial
CPU resources. This shortcoming is addressed by defrag.

When we compare the worker allocation for MR in Fig. 10
with RU, we see that the worker count grows at a slower rate.
Here, we perform defrag when a DAG is submitted – stop-
ping, merging and restarting existing DAGs that it reuses. We
do not use proxy tasks and can pack tasks for a single merged
DAG into workers more efficiently in Storm.Hence, the worker
growth when a DAG is submitted is slower for MR.However, this
defrag is not relevant when removing a DAG, and the worker
allocation does not reduce. MPR, on the other hand, is active
during both DAG submit and remove, and it avoids both
proxy and paused tasks by pruning the latter from DAGs
when removed. So its benefits accrue for every operation.

E.g., in Fig. 10a, we see that OPMW SEQ is allocated 61
workers using MR and MPR at its peak since both are identi-
cal during the DAG submission phase. RU takes 88workers at
the peak, and these are all lower than NRU that has 124 work-
ers. But the worker count stays the same for RU andMR dur-
ing the removal phase of SEQwhile it drops to 0 for NRU and
MPR. ForOPMW’s RW1 trace (Fig. 10b), the worker allocation
for NRU is 82� 14%, for RU is 83� 24%, for MR is 56� 21%
and for MPR is 47� 13%. NRU and RU marginally differ in
the worker allocation till step 120 beyond which RU is allo-
cated strictly more workers. Though there is reuse of tasks in

Fig. 9. Frequency of reuse plots showing the fraction of time that tasks were reused by more than dataflow, using RU.

Fig. 10. Cumulative Workers Allocated across operation steps, with and without reuse and defragmentation.

1402 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 4, OCTOBER-DECEMBER 2021

Authorized licensed use limited to: Indiana University. Downloaded on June 05,2024 at 18:28:07 UTC from IEEE Xplore. Restrictions apply.

RU as reported in Fig. 7, Storm does not allow workers to be
shared across dataflows. Since every reused dataflow also has
at least 1 proxy task that is placed in 1 worker, its benefits are
reduced. However,MR and MPR have fewer workers than NRU
during the entire random walk phase, benefiting from the lack of
proxy (MR, MPR) and paused (MPR) tasks, and better pack-
ing of tasks from DAGs merged into a single dataflow onto a
common set of workers. OPMWRW2 behaves similarly.

Interestingly, for RIoT’s SEQ in Fig. 10d, the workers allo-
cated for both NRU and RU are the same up to the peak sub-
mission step of 21. RIoT DAGs have a maximum of 8 tasks
that can all fit in a singleworker (p ¼ 8). So everyDAG causes
1 worker to be allocated, either to run all tasks (no reuse) or
for the proxy task (with reuse). MR and MPR are alloted 12
workers at the peak step – a drop of 42 percent over NRU and RU.
In the drain phase, NRU and MPR decrease linearly whereas
MR and MPR stay constant. In RIoT RW1 (Fig. 10e), the
worker allocation for NRU is 19� 21%, RU is 21� 23%, MR
is 12� 24%, and MPR is the least at 9� 18%. RU is actually
worse than NRU, but the defrag sharply drops the workers
alloted tomatch the CPU usage reduction seenwith reuse.

7.3.2 Reduction in Worker Count

In Fig. 11, we also report the incremental number of workers
reduced byMRandMPRdefrag after each operation step, rela-
tive to workers allocated for RU. This only shows the savings
per step, rather than their cumulative benefit across time seen
before in Fig. 10. The width of the violin plot shows the frac-
tion of all operations that have the corresponding Y axis
value, and the mean is marked. The Y axis values of workers
reduced per step are whole numbers but the violin smooths
them. For RW, only operations in the 100 RW steps are
included in this and other violin plots.

MR acts only on a DAG submission and not removal. So in
half of the steps, MR does not save any workers over RU and
the plots are wide at Y ¼ 0. For the DAG submission steps,
we see that up to 2 workers are saved for OPMW, and up to 1
worker saved for RIoT – the latter at best saves the 1 worker
that is always allocated to RIoT dataflows, either with or

without reuse. Considering all 6 traces, MR is able to reduce one
or more workers in 13 percent of the operation steps.

MPR acts on both DAG submit and removal, and it is
able to save up to 4 workers from being allocated, relative to
RU for OPMW. RIoT is limited to 1 worker due to the rea-
sons given above for MR. We observe that the worker alloca-
tion drops by 1 in 31 percent of the steps using MPR, across all 6
traces, and drop by more than 1 worker in 8 percent of the steps.

Interestingly, MPR can allocate more workers than RU as
seen by the negative reduction. This occurs only when RU is
able to handle a DAG submission solely by unpausing exist-
ing paused tasks that already have workers allocated, hence
taking no additional workers than before, while MPR needs
to deploy these tasks and allocateworkers for them. This hap-
pens in 7 percent of steps across all 6 traces, and only for the
RW traces and not SEQ since the latter does not resubmit run-
ning dataflows. This also gives SEQ a better reduction than
RW. So, up to 3 more workers for OPMW and 1 more for
RIoTmay be assigned byMPR than RU.

Despite these marginal benefits per step, MPR consis-
tently reduces the cumulative number of workers allocated for all
traces to a greater extent than MR. For OPMW, this ranges
from 29–88 workers reduced by MPR, and 11–27 reduced
by MR. For RIoT, this is 6–21 workers saved by MPR and 3–
9 workers by MR. The savings-potential is greater for larger
DAGs like OPMWwith more tasks, and workers allocated.

7.3.3 Dataflow Submission or Removal Operation Time

However, the defrag benefits come with additional over-
heads when a DAG submit or remove operation is done. This
increases the latency time to complete the operation, and can
impact time sensitive applications. When a dataflow is sub-
mitted, the operation time for NRU and RU, is the time to start
a full or incremental DAG in Storm, while MR andMRUmay
also stop DAGs that are being reused, before they start a
mergedDAG.When aDAG is removed, NRU has to stop it in
Storm, while RU and MR just pause its non-reused tasks
using control messages, and MRU may stop, prune and
restart the updatedDAGswith Storm.

We performmicro-benchmarks in Storm to find the distri-
butions of the time taken to submit a DAG and have it pro-
duce an output, and the time taken to stop a DAG
completely, for the diverse OPMWDAGs. The time to deploy
a DAG ranges from 30
 849 secs with a mean of 64:5 secs
and median of 40:4 secs, while the time to undeploy it is
much smaller at up to 12:9 secs, with a median of 9:4 secs.
This time is not deterministic per DAG, does not correlate
with the DAG size, and is much larger than the time to trans-
mit the control messages, which takes � 200 ms. So we sam-
ple from these distributions to estimate the DAG operation
time to complete each step of a trace by the different strategies,
and plot their distribution in Fig. 12.

Fig. 11. Distribution of Worker Allocation Reduced at each step, relative
to RU, when using MR and MPR strategies.

Fig. 12. Violin plot distribution of DAG Operation Time using different strategies. Mean values are shown by a bar.

CHATURVEDI ET AL.: COST-EFFECTIVE SHARING OF STREAMING DATAFLOWS FOR IOT APPLICATIONS 1403

Authorized licensed use limited to: Indiana University. Downloaded on June 05,2024 at 18:28:07 UTC from IEEE Xplore. Restrictions apply.

The operation time distribution for NRU is nearly identi-
cal in all the traces as each DAG submit or remove operation
step maps to the same Storm DAG operation. The time for
this single operation is sampled from the same Storm add
or remove distribution, and all traces have an equal number
of add and remove steps – hence the wider violin at median
add and remove times of 40:4 secs and 9:4 secs. So the oper-
ation times are similar, with a mean of � 26 secs.

The mean operation time is the least for RU in all the traces,
lower than even NRU, since only DAG submit operations
incur time and there is zero time for remove operations as
tasks are just paused. This is visible for the two SEQ traces,
Figs. 12a and 12d, where the time to add a DAG is similar to
NRU while the time to remove gets shifted down to zero.
Unlike SEQwhere a dataflow is submitted only once, many of
them are resubmissions in the RW traces, where RU just
unpauses prior DAGs with zero operation time. This is more
so for RIoT, which has fewer unique DAGs, than for OPMW.
Hence, the time distribution skews lower, at � 7:6 secsmean
for OPMWand 2:5 secs for RIoT.

MR is similar to RU with no time taken for DAG removal, but
during submission, it can take extra time to stop one or moremerged
dataflow(s) with overlaps before it starts a new one. Since the time
to stop a StormDAG is smaller than to start one, the operation
times for RU and MR are comparable with a shift of about
9:4 secs at the top of the violin. E.g., for OPMW, RU’s second
most frequent operation time is � 40 secs while it is
� 50 secs forMR.

Though MPR reduces worker allocation and usage the most, it
also takes the most operation time. Here, every DAG operation
is likely to cause a (merged) DAG to be stopped, and the
merged or pruned DAG to be started, depending on a sub-
mission or removal. Hence, the time taken by most traces
lies close to 50 secs, which is the sum of the median times to
stop and start DAGs in Storm. In some cases, more than 1
DAG may be stopped, and in others, an independent DAG
stopped, as reflected by whiskers of the violin.

In NRU and RU, the time spent affects only the specific
dataflow that is being submitted, while MR and MPR also
affect other DAGs that are being reused. Similarly, when a
DAG is removed, NRU affects just that DAG, RU and MR
have negligible impact, while MPR impacts all DAGs that
were reused by the removed DAG. However, this operation
time is paid once when a DAG is submitted or removed
while the resource usage accrues for the lifetime of the
DAG. If dataflows are long-runing and there is limited flux,
then the higher one-time costs for MPR will be acceptable in
return for its significant reduction resource benefits.

7.4 Results for Billing Benefits

We quantify the monetary costs and benefits of the strategies on
Cloud VMs by estimating their billing costs. We mimic the

round-robin scheduling of tasks to workers in Storm for the
simulation runs in the previous section.We then use per-min-
ute billing, common in Cloud providers, to calculate the pro-
portional cost per submitted dataflow for the duration of its
submission in the trace using the model in Section 6, and the
cumulative cost for all submitted dataflows at a step.

For each step of a trace, we plot the cumulative billing cost
for all active DAGs and the consequent cost per running task
that is billed. We report these for NRU and MPR, since the
former is the baseline and the latter is more resource efficient
than RU and MPR which suffer from proxy or paused tasks
with idle worker allocation. In particular, we show the bene-
fits of Cloud elasticity by adding and removing 1-core VMs
with 1 worker on each, on-demand, from the Storm cluster.
This allows the VM costs to match the worker allocation. For
simplicity, we assume a billing cost of US¢ 0.10 per core-
hour, which is US¢ 0.1667 per core-minute. The costs for dif-
ferent traces are shown in Fig. 13. While the absolute costs
appear modest, note that each step in our trace is just 1 min
long. So the total costs (left Y axis) need to be scaled for the
duration for which a DAG will run in the real-world, e.g., if
each DAG runs for 100 mins as step size, then the left Y axis
values can be treated as US$ rather than US¢. Often, stream-
ing dataflows run for days.

When using 1-core VMs in the Storm cluster, Fig. 13 shows
the total cost of all DAGs in the left Y axis, and it closely
matches the worker allocation pattern in Fig. 10. Having the
VM acquisition match the worker allocation ensures that
billed VMs have all workers fully allocated. For OPMW, the
SEQ trace costs US¢ 21 at the peak for all its DAGs using
NRU, corresponding to the 21 workers allocated for the
1 min step duration (Fig. 13a), while it costs only US¢ 10 for
MRU. This translates to peak cost reduction of 51 percent. The
area under the curve, which gives the total cost incurred for
the entire trace, is US$ 13.57 for NRU and US$ 8.26 for MPR
– an average reduction of 39 percent. The total DAG costs
paid during the 100 steps of RW1 and RW2 are US$ 13.70
andUS$ 12.20 for NRU, andUS$ 7.87 andUS$ 7.11 forMPR,
with a mean savings of 42 percent for both.

The average cost per task, on the right Y axis of Fig. 13,
divides the DAG costs equally among all tasks of the original
dataflow submission. Since NRU does not reuse tasks, its
least average cost per taskwill bewhen aworker has themax-
imum possible p ¼ 8 tasks packed in it, at US¢ 0:1667

8 ¼US¢
0:023=min. The average task cost at the start and end of the
OPMW SEQ trace is higher at about US¢ 0.030 per step for
NRU and also MPR. At these steps, workers have fewer than
8 tasks on each andMPR also has less chance of reuse as there
are fewer tasks running. These cause the average to be higher.
AsmoreDAGs are submitted, the packing of tasks toworkers
improves and stabilizes to an average task cost of�US¢ 0.024
per step for NRU. This applies to OPMW’s RW traces as well.

Fig. 13. Cumulative Billing cost (solid line, left Y axis) and Average cost per task (dashed line, right Y axis) using a 1 core VM billed at US¢ 10 per
VM-hour at 1 min granularity, with NRU and with MPR approaches.

1404 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 4, OCTOBER-DECEMBER 2021

Authorized licensed use limited to: Indiana University. Downloaded on June 05,2024 at 18:28:07 UTC from IEEE Xplore. Restrictions apply.

The average task costs for MPR continue to drop for SEQ to
reach US¢ 0:012=min at the peak DAG submission step,
where reuse is maximum. For the RW traces, the average task
cost drops to US¢ 0.014 per step for MPR, relative to NRU.
RW traces have less reuse than SEQ at the peak. Also, as
mentioned before, we do not allow the trace to resubmit an
entire running DAG out of fairness to NRU. This avoids
whole DAG reuse which can offer better benefits. We do
notice more variation in the average costs for MPR than NRU
since adding or removing a single DAG can impact the reuse
of running tasks frommultiple submitted dataflows.

The RIoT traces cost about a third of the OPMW traces, in
keeping with their smaller DAG sizes. The total DAG costs
change in discrete steps since the submission or removal of
a DAG causes, at best, 1 VM to be added or removed as all
tasks of any RIoT DAG will fit in 1 worker. The total cost
curve for OPMW is smoother due to having DAGs with
more numbers of tasks, and hence more workers.

For RIoT’s SEQ, RW1 and RW2 traces, the area under the
curve for total DAG cost for NRU is US¢ 73.5, US¢ 315 and
US¢ 280, while for MPR it is US¢ 47, US¢ 174 and US¢ 157.
This puts the mean total cost reduction for MPR over NRU at 36–
45 percent for each trace. The average task cost using NRU stays
at US¢ 0.024–0.026 per step for all traces. This is smaller for
MPR in all cases, at US¢ 0.014–0:016=min. While the average
task cost lines are smoother than total costs, the fact that a
whole RIoT DAG fits in one worker means that with reuse,
there are cases where no extra workers are required for sub-
mitted DAGs as their incremental tasks are repacked in exist-
ing ones. This causes the average cost to drop. The sharp
increases for MPR indicate that a new worker is provisioned
for a submitted DAG or the packing is less efficient after a
DAG removal, increasing the average.

8 RELATED WORK

Application sharing and reuse has been examined in the con-
text of distributed stream processing systems (DSPS) and data
stream management systems (DSMS) [29]. Repantis, et al. [24],
[30] explore streaming application composition in a wide area
P2P network (WAN), along with stream and task reuse. Their
DAG of tasks has ontologically unique names for streams, and
newly submitted DAGs have their stream names matched
against existing ones. Identical streams are reused, while new
tasks are collocated with upstream or downstream tasks to
minimize network hops. We instead use a more rigorous
graph-based approach to distinctively identify equivalent tasks
and their output streams. They do not adequately examine the
removal of a submitted DAG – as we saw, demerging has a
cascading effect on the deployed DAGs. We limit our work to
a Cloud data-center rather than WANs. But we do examine
the monetary benefits of sharing dataflows within Cloud
VMs.We extend thepopular Stormplatform for our validation,
which requires us to perform defragmentation to address
its limitations in dynamically changing deployed DAGs.

In DSMS, query DAGs are formed from operators with
well-defined semantics to execute on tuple streams. Hirzel,
et al. [31] suggest optimizations for eliminating equivalent
computation and redundancy operators. Zhou, et al. [32]
consider overlaps between the results of continuous queries
and merges them into an equivalent query based on shared

attributes, predicates and streams. We similarly merge data-
flows that share equivalent streams, but adopt a DAG model
for comparing equivalence that relies on typed tasks, rather
than operator semantics and tuple schemas used in query
reuse. So ourwork is generalizable to anyDAG-based stream-
ing application. Others have examined query admission
control, operator allocation and reuse as an inter-related con-
strained optimization problem [33]. Their reuse of base (raw)
and computed (derived) streams is conceptually similar to us
but requires knowledge of operator behavior. They also
impose resource constraints to limit the number of queries
entering the system. We focus on opportunistic sharing of
dataflow subsets to reduce their execution cost rather than be
resource limited. We provision VMs elastically, with costs
split among the shared dataflows.

Dynamic scheduling of streaming dataflows has been well-
studied, to respond to changing rates, VM performance or
application features [27], [34]. These can be used as alterna-
tives to Storm’s default round-robin model. But there is also
similarity between our defrag approaches to consolidate
DAGs into fewer ones, and task placement strategies to con-
solidate them into fewer VMs to reduce costs. There has
been work on billing of stream processing applications to aggre-
gate costs for infrastructure services in a multi-cloud envi-
ronment [35]. Our billing approach is motivated more by
partial sharing of applications themselves rather than just
the underlying VMs on which they run.

Dataflow reuse for static rather than streaming applica-
tions has also been explored for scientific and business work-
flows. e-Science communities actively compose and publish
workflows through portals for loosely-coupled collabora-
tion [20], [21], [36], including for Big Data applications [37].
This can be adopted by the IoT domain for streaming data-
flows, as they grow popular. E.g., myExperiment [20] offers a
workflow repository, with annotations to help locate, mod-
ify and reuse workflows. However, reuse of the workflow
composition is done manually, and modified workflows are
published back for others to use. We instead consider auto-
mated reuse of running dataflows.

Goderis, et al. [38] identify similar worklows from exist-
ing DAGs based on their structure similarity using subgraph
isomorphism, and rank the matched workflows. We also use
graph structure matching for our DAGs, but require an exact
match of the ancestor graphs to guarantee task equivalence.
Others perform statistical analysis onworkflows frommyEx-
periment to examine recurring services (tasks) and reuse
among workflows [39]. Network analytics is used to recom-
mend services for newworkflows being composed.We focus
on running dataflows rather than composing them.

Reuse has also been considered in business workflows to
efficiently manage business processes and save money or
time [18], [40]. Ivan et al. [19] model business processes
using p-calculus along with ontologies and annotations to
allow artifact reuse. Others have also used rule-based infer-
encing for reuse [41]. Such semantic annotations are costly
to define, and keyword matching cannot guarantee exact
equivalence. There has been substantial work on efficient
and cost-effective scheduling of workflows on Clouds to
meet QoS needs [42], [43]. Rather than just share VMs across
applications, we share running tasks themselves. These VM
scheduling strategies can complement our work.

CHATURVEDI ET AL.: COST-EFFECTIVE SHARING OF STREAMING DATAFLOWS FOR IOT APPLICATIONS 1405

Authorized licensed use limited to: Indiana University. Downloaded on June 05,2024 at 18:28:07 UTC from IEEE Xplore. Restrictions apply.

Graph analysis over provenance metadata [23] has been
used to compare the reproducibility of workflows, and
identify divergence in the output [44]. Prospective prove-
nance [22] describes the expected workflow behavior based
on the DAG, and uses it for comparison and reuse. This is
similar to our static DAG analysis for finding dataflow
equivalence, but for streaming dataflows that are running.
Data sharing among applications also raises concerns on
confidentiality and privacy. Provenance has been used to
verify authenticity of data processed in the Cloud to enable
trustworthy (re)use [45]. Others have also proposed Infor-
mation Flow Control (IFC) models to specify and enforce
sharing mechanisms in the Cloud, and validated it for web
service transformations [46]. These complement our work.

Unlike continuous stream processing, workflows execute
in batch and generate persistent files. Hence, it is the work-
flow composition, or the static data that a prior execution
generates, that is reused for future executions rather than
the running workflow and transient streams. Provenance
serves as an enabler. Our approach also automates the
merging and unmerging of DAGs without user inputs, and
does not have the overheads of maintaining semantic ontol-
ogies, instead relying on typed tasks that is common in
DSPS.

One can find similarities between our approach and Com-
mon Subexpression Elimination (CSE) used in compiler optimi-
zation. Here, redundant expressions are found in code, often
represented as a DAG, and substituted by an equivalent com-
puted value. Aho, et al. [47] find the lowest common ancestors
in a DAG and use a merge concept to capture ancestor infor-
mation by adding parent-child edges andmaintaining a forest
structure. Others use an intermediate representation that
combines data and control dependency in a program with
DAG structure, on which they identify the lowest common
ancestor for optimization [48].

9 CONCLUSION

In this article, we have motivated the need and opportunity
for reusing partial subsets of tasks from streaming data-
flows, in the emerging collaborative IoT domain where data
stream and dataflow sharing is expected. We have formal-
ized the problem definition with a tight specification of task
equivalence between two dataflows, which allows them to
be reused. We also define invariants that achieve output
stream consistency and resource minimization. We use
these specifications to design merge and unmerge algo-
rithms for dataflows that are submitted to and removed
from the DSPS, and implement them for Apache Storm. We
also propose strategies to address DAG fragmentation from
deploying incremental dataflows that can reduce resource
efficiency. A formal model for proportional billing of Cloud
resources for shared dataflows is also offered.

The algorithms are empirically validated in a Storm cluster
using three traces of the OPMW scientific dataflow DAGs
and real IoT streaming applications from RIoTBench. With
reuse, we reduce the running task count by 34–45 percent
and cumulative cores by 29–63 percent. We use defragmenta-
tion to remove stale workers from being billed after the
DAGs are removed. Here, MPR defragmentation offers the
better benefit with amonetary savings of 36–44 percent when

simulating execution on Cloud VMs, while its operation exe-
cution time per DAG goes up by about 20 secs. We also see a
greater and smoother impact of the larger dataflows
of OPMW compared to the smaller RIoT dataflows. These
results show that our algorithms are viable for deployment in
collaboratory IoT environments hosted in Cloud data centers.

Such redundancy can be avoided manually for a small
number of dataflows. But collaborative IoT applications, at
large scales and across organizational boundaries, are emerg-
ing. The growing access to public IoT streams, the prevalence
of IoT application platforms, and innovative streaming data-
flows hosted on the Cloud will drive this. In that respect, our
work is ahead of the curve.

In future, we propose to study the impact on DAG
latency due to the broker indirection. Improved schedul-
ing strategies can consider dataflow reuse and defrag-
mentation for their optimization, consider locality of
tasks that are part of the same merged DAG but present
as separate dataflows, and prioritize shared tasks that
support multiple dataflows. Validation on other DSPS
platforms should also be explored. We will also consider
using techniques like bi-simulation to formally prove the
correctness of our merge and unmerge algorithms in
ensuring ancestor graph equivalence [49].

REFERENCES

[1] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos,
“Sensing as a service model for smart cities supported by internet
of things,” Trans. Emerging Telecommun. Technol., vol. 25, no. 1,
pp. 81–93, 2014.

[2] A. R. M. Forkan, I. Khalil, A. Ibaida, and Z. Tari, “BDCaM: Big
data for context-aware monitoring – a personalized knowledge
discovery framework for assisted healthcare,” IEEE Trans. Cloud
Comput., vol. 5, no. 4, pp. 628–641, Oct.-Dec. 2017.

[3] S. Aman, Y. Simmhan, and V. K. Prasanna, “Holistic measures for
evaluating prediction models in smart grids,” IEEE Trans. Knowl.
Data Eng., vol. 27, no. 2, pp. 475–488, Feb. 2015.

[4] J. Baek, Q. H. Vu, J. K. Liu, X. Huang, and Y. Xiang, “A secure
cloud computing based framework for big data information man-
agement of smart grid,” IEEE Trans. Cloud Comput., vol. 3, no. 2,
pp. 233–244, Apr.-Jun. 2015.

[5] A. Biem, E. Bouillet, H. Feng, A. Ranganathan, A. Riabov,
O. Verscheure, H. Koutsopoulos, and C. Moran, “IBM Infosphere
Streams for scalable, real-time, intelligent transportation services,”
in Proc. ACMSIGMOD Int. Conf.Manage., 2010, pp. 1093–1104.

[6] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel,
S. Kulkarni, J. Jackson, K. Gade, M. Fu, J. Donham et al., “Storm@
twitter,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2014,
pp. 147–156.

[7] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache flink: Stream and batch processing in a sin-
gle engine,” IEEE Data Eng. Bulletin, vol. 38, pp. 28–38, 2015.

[8] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica,
“Discretized streams: Fault-tolerant streaming computation at
scale,” in Proc. Symp. Operating Syst. Principles, 2013, pp. 423–438.

[9] M. Yannuzzi, F. van Lingen, A. Jain, O. L. Parellada, M. M. Flores,
D. Carrera, J. L. Perez, D. Montero, P. Chacin, A. Corsaro, and A.
Olive, “A new era for cities with fog computing,” IEEE Internet
Comput., vol. 21, no. 2, pp. 54–67, Mar.-Apr. 2017.

[10] Y. Simmhan, V. Prasanna, S. Aman, A. Kumbhare, R. Liu,
S. Stevens, and Q. Zhao, “Cloud-based software platform for
big data analytics in smart grids,” Comput. Sci. Eng., vol. 15,
no. 4, pp. 38–47, 2013.

[11] M. Strohbach, H. Ziekow, V. Gazis, and N. Akiva, “Towards a big
data analytics framework for IoT and smart city applications,” in
Proc. Model. Proc. Next-Gen. Big-Data Tech., 2015, pp. 257–282.

[12] S. Hausmann, “Build a real-time stream processing pipeline with
apache flink on AWS,” Apr. 2017. [Online]. Available: https://
aws.amazon.com/blogs/big-data/build-a-real-time-stream-
processing-pipeline-with-apache-flink-on-aws/

1406 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 4, OCTOBER-DECEMBER 2021

Authorized licensed use limited to: Indiana University. Downloaded on June 05,2024 at 18:28:07 UTC from IEEE Xplore. Restrictions apply.

https://aws.amazon.com/blogs/big-data/build-a-real-time-stream-processing-pipeline-with-apache-flink-on-aws/
https://aws.amazon.com/blogs/big-data/build-a-real-time-stream-processing-pipeline-with-apache-flink-on-aws/
https://aws.amazon.com/blogs/big-data/build-a-real-time-stream-processing-pipeline-with-apache-flink-on-aws/

[13] Apache, “Apache openwhisk: Open source serverless cloud
platform,” 2019. [Online]. Available: https://openwhisk.apache.
org/

[14] Microsoft Azure, “Azure IoT solution accelerators,” 2019.
[Online]. Available: https://www.azureiotsolutions.com

[15] PTC, “Thingworx industrial IoT,” 2019. [Online]. Available:
https://www.ptc.com/en/products/iiot/

[16] A. Shukla, S. Chaturvedi, andY. Simmhan, “RIoTBench:A real-time
IoT benchmark for distributed stream processing platforms,” Con-
currency Comp.: Practice Exp., vol. 29, no. 21, 2017, Art. no. e4257.

[17] S. Nastic, S. Sehic, M. Vogler, H.-L. Truong, and S. Dustdar,
“Patricia–a novel programming model for IoT applications on
cloud platforms,” in Proc. Int. Conf. Service-Oriented Comput. Appl.,
2013, pp. 53–60.

[18] M. Rosemann and J. vom Brocke, “The six core elements of busi-
ness process management,” in Handbook on Business Process Man-
agement 1, Berlin, Germany: Springer, 2015.

[19] I. Markovic and A. C. Pereira, “Towards a formal framework for
reuse in business process modeling,” in Proc. Int. Conf. Bus. Process
Manag., 2007, pp. 484–495.

[20] D. D. Roure, C. Goble, and R. Stevens, “Designing the myexperi-
ment virtual research environment for the social sharing of work-
flows,” in Proc. 3rd IEEE Int. Conf. e-Sci. Grid Comput., 2007,
pp. 603–610.

[21] D. Garijo and Y. Gil, “A new approach for publishing workflows:
Abstractions, standards, and linked data,” in Proc. Workshop Work-
flows Support Large-scale Sci., 2011, pp. 47–56.

[22] S. B. Davidson and J. Freire, “Provenance and scientific work-
flows: Challenges and opportunities,” in Proc. ACM SIGMOD Int.
Conf. Manage. Data, 2008, pp. 1345–1350.

[23] Y. L. Simmhan, B. Plale, and D. Gannon, “A survey of data prove-
nance in e-science,”ACMSIGMODRec., vol. 34, no. 3, pp. 31–36, 2005.

[24] T. Repantis, X. Gu, and V. Kalogeraki, “QoS-aware shared compo-
nent composition for distributed stream processing systems,”
IEEE Trans. Parallel Distrib. Sys., vol. 20, no. 7, pp. 968–982,
Jul. 2009.

[25] S. Chaturvedi, S. Tyagi, and Y. Simmhan, “Collaborative reuse of
streaming dataflows in IoT applications,” in Proc. IEEE Itn. Conf.
eSci. Conf., 2017, pp. 403–412.

[26] Y. Simmhan, P. Ravindra, S. Chaturvedi, M. Hegde, and R. Balla-
majalu, “Towards a datadriven IoT software architecture for
smart city utilities,” Softw.: Practice Experience, vol. 48, pp. 1390–
1416, 2018.

[27] B. Peng, M. Hosseini, Z. Hong, R. Farivar, and R. Campbell, “R-
storm: Resource-aware scheduling in storm,” in Proc. ACM 16th
Annu. Middleware Conf., 2015, pp. 149–161.

[28] A. G. Kumbhare, Y. Simmhan, M. Frincu, and V. K. Prasanna,
“Reactive resource provisioning heuristics for dynamic dataflows
on cloud infrastructure,” IEEE Trans. Cloud Comput., vol. 3, no. 2,
pp. 105–118, Apr.-Jun. 2015.

[29] G. Cugola and A. Margara, “Processing flows of information:
From data stream to complex event processing,” ACM Comput.
Surveys, vol. 44, no. 3, 2012, Art. no. 15.

[30] T. Repantis, X. Gu, and V. Kalogeraki, “Synergy: Sharing-aware
component composition for distributed stream processing sys-
tems,” in Proc. ACM/IFIP/USENIX Int. Conf. Distrib. Syst. Platforms
Open Distrib. Process., 2006, pp. 322–341.

[31] M. Hirzel, R. Soul�e, S. Schneider, B. Gedik, and R. Grimm, “A cat-
alog of stream processing optimizations,” ACM Comput. Surveys,
vol. 46, no. 4, 2014, Art. no. 46.

[32] Y. Zhou, A. Salehi, and K. Aberer, “Scalable delivery of stream
query result,” PVLDB Endowment, vol. 2, no. 1, pp. 49–60, 2009.

[33] E. Kalyvianaki, W. Wiesemann, Q. H. Vu, D. Kuhn, and P. Piet-
zuch, “Sqpr: Stream query planning with reuse,” in Proc. IEEE Int.
Conf. Data Eng., 2011, pp. 840–851.

[34] M. Yang and R. T. Ma, “Smooth task migration in apache storm,” in
Proc. ACMSIGMOD Int. Conf. Manage. Data, 2015, pp. 2067–2068.

[35] M. Smit, B. Simmons, and M. Litoiu, “Distributed, application-level
monitoring for heterogeneous clouds using stream processing,”
Future GenerationComput. Syst., vol. 29, no. 8, pp. 2103–2114, 2013.

[36] E. Deelman, D. Gannon, M. Shields, and I. Taylor, “Workflows
and e-science: An overview of workflow system features and
capabilities,” Future Generation Comput. Syst., vol. 25, no. 5, pp.
528–540, 2009.

[37] J. Wang, D. Crawl, and I. Altintas, “Kepler + hadoop: A general
architecture facilitating data-intensive applications in scientific
workflow systems,” in Proc. Workshop Workflows Support Large-
Scale Sci., 2009, Art. no. 12.

[38] A. Goderis, P. Li, and C. Goble, “Workflow discovery: The prob-
lem, a case study from e-science and a graph-based solution,” in
Proc. Int. Conf. Web Serv., 2006, pp. 312–319.

[39] W. Tan, J. Zhang, and I. Foster, “Network analysis of scientificwork-
flows: A gateway to reuse,” Comput., vol. 43, no. 9, pp. 54–61, 2010.

[40] S. Zlatkin and R. Kaschek, “Towards amplifying business process
reuse,” in Proc. Int. Conf. Perspectives Conceptual Model., 2005,
pp. 364–374.

[41] Y. Mou, J. Cao, and S. Zhang, “A process component model for
enterprise business knowledge reuse,” in Proc. IEEE Int. Conf.
onServices Comput., 2004, pp. 409–412.

[42] A. C. Zhou, B. He, and C. Liu, “Monetary cost optimizations for
hosting workflow-as-a-service in IaaS clouds,” IEEE Trans. Cloud
Comput., vol. 4, no. 1, pp. 34–48, Jan.-Mar. 2016.

[43] J. Li, M. Woodside, J. Chinneck, and M. Litiou, “Adaptive cloud
deployment using persistence strategies and application awareness,”
IEEETrans. Cloud Comput., vol. 5, no. 2, pp. 277–290, Apr.-Jun. 2017.

[44] P. Missier, S. Woodman, H. Hiden, and P. Watson, “Provenance
and data differencing for workflow reproducibility analysis,” Con-
currency Comp.: Practice Exp., vol. 28, no. 4, pp. 995–1015, 2016.

[45] K.-K. Muniswamy-Reddy, P. Macko, and M. I. Seltzer,
“Provenance for the cloud,” in Proc. 8th USENIX Conf. File Storage
Technol., 2010, vol. 10, pp. 15–14.

[46] T. F. J. M. Pasquier, J. Singh, D. Eyers, and J. Bacon, “Camflow:
Managed data-sharing for cloud services,” IEEE Trans. Cloud Com-
put., vol. 5, no. 3, pp. 472–484, Jul.-Sep. 2017.

[47] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, “On finding lowest
common ancestors in trees,” in Proc. ACM 5th Annu. ACM Symp.
Theory Comput., 1973, pp. 253–265.

[48] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program
dependence graph and its use in optimization,” Trans. Program.
Languages Syst., vol. 9, no. 3, pp. 319–349, 1987.

[49] P. Buneman and S. Staworko, “RDF graph alignment with
bisimulation,” Proc. VLDB Endowment, vol. 9, no. 12, pp. 1149–1160,
2016.

Shilpa Chaturvedi received the master’s degree
from the Indian Institute of Science (IISc), and
this article part of her graduate studies. She is
member technical staff with the Advanced Tech-
nology Group (ATG) of NetApp Inc., Bangalore.
Her research interests include scheduling and
sharing of streaming dataflows for IoT. She is a
student member of the IEEE.

Sahil Tyagi is working toward the PhD degree at
Indiana University, Bloomington, and this article
was part of his work as a project staff at IISc. His
research interests include on middleware for IoT
applications.

Yogesh Simmhan received the PhD degree from
Indiana University. He is an assistant professor
with the Indian Institute of Science (IISc). His
research explores abstractions, algorithms and
applications on distributed systems, including
Clouds and Internet of Things. He is the associate
editor-in-chief for the Journal of Parallel andDistrib-
uted Systems, and earlier served as an associate
editor of the IEEE Transactions on Cloud Comput-
ing. Previously, he was a research faculty with the
University of Southern California (USC) and a post-
doc at Microsoft Research. He is a senior member
of the IEEEand ACM.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

CHATURVEDI ET AL.: COST-EFFECTIVE SHARING OF STREAMING DATAFLOWS FOR IOT APPLICATIONS 1407

Authorized licensed use limited to: Indiana University. Downloaded on June 05,2024 at 18:28:07 UTC from IEEE Xplore. Restrictions apply.

https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://www.azureiotsolutions.com
https://www.ptc.com/en/products/iiot/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

