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GPU Design
• Originally used to render graphics for shading, texturing and independent polygons for 3D objects 

• CPUs control and execute the logic for general-purpose computing 

• Thus, GPUs thus have many more processing units and higher memory bandwidth while CPUs have 
better ALU for instruction processing and faster clock speeds

CPUs can handle more complex workloads 

GPUs have more ALUs/FLUs but less capable 

CPUs have more cache memory 

GPUs are designed for parallelizable workloads
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Applications for GPU Computing
• Floating-point heavy operations and simple data access patterns can speedup from GPUs (GPGPUs) 

• CUDA = Compute Unified Device Architecture is a programming model for general purpose (GP) 
computing on NVIDIA GPUs that comes as an extension to C/C++ and Fortran 

• CUDA API accelerates numerically intensive programs like matrix multiplication, FFTs, decryptions etc. 

• Scientific and engineering fields leveraging CUDA and GPUs: computational fluid dynamics, 
bioinformatics, molecular dynamics, computational physics, quantum chemistry, medical imaging, data 
science, finance, climate/weather modeling and deep learning 

• More examples can be found here: https://www.nvidia.com/en-us/accelerated-applications/ 

• Any downsides?

https://www.nvidia.com/en-us/accelerated-applications/
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Heterogeneous Computing
• CPUs are designed for multi-tasking and fast serial 

processing, while GPUs are designed for high 
throughput parallel tasks 

• GPUs are hosted on CPU-based systems; offload 
massively parallel and numerically intensive tasks 
to GPUs in heterogeneous computing 

• Program flow in CUDA: 

• Load data to CPU memory and copy to GPU 

• Call computation to execute on GPU device 

• Fetch the results back to the CPU
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Execution Syntax in CUDA
• Parallel programming w/ CUDA needs NVIDIA specific GPU hardware 

and CUDA toolkit installed 

• Kernel is a function to be executed on a GPU device, and can either 
be called from device itself or the CPU (host); but always executes on 
the device! 

• Specified by the __global__ specifier with an additional execution 
configuration syntax <<<b, t>>> 

• To execute CUDA code, we need the NVIDIA CUDA compiler (nvcc) 
and specify the GPU architecture (or compute capability) we want to 
run parallel code on.
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Compiling/Running CUDA C/C++
• Examples available here https://github.com/sahiltyagi4/graphalgoscuda 

• Access a node partition with GPUs (may have limited access!) and load 
CUDA toolkit: module load cuda/*version* (IU GPU clusters have 
9.0/9.1/10.0/10.1/11.0/11.2) 

• How to choose device to run CUDA code: cudaSetDevice(), 
CUDA_VISIBLE_DEVICES env 

• How to compile CUDA C/C++: nvcc -arch=*compute_arch* -o *target* 
*target.cu* 

• How to debug and profile CUDA code: nvprof ./*target* 

• For e.g., V100 uses has compute capability 7.0 and uses architecture sm_70

https://github.com/sahiltyagi4/graphalgoscuda
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Basic CUDA Syntax and Functions
• The __global__ specifier tells CUDA compiler what needs to be executed on the GPU device 

• Memory allocations/manipulation in CUDA: cudaMalloc(), cudaMemcpy(), cudaMallocHost() (pinned 
memory), cudaMallocManaged() (unified memory), cudaFree() 

• Thread synchronization done via cudaDeviceSynchronize(), but stalls the GPU pipeline 

• Individual threads can be accessed via threadIdx, blockIdx, blockDim, gridDim identifiers 

• cudaEvent_t built over CUDA streams gives an alternative to CPU timers without explicit device 
synchronization via functions like cudaEventCreate(), cudaEventRecord() , 
cudaEventSynchronize() and cudaEventDestroy(). 

• cudaError_t provides error handling in CUDA (cudaGetLastError(), cudaGetErrorString())
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Thread execution in GPU
• What makes GPUs great for HP parallel computing? 

• A thread is composed of instructions + data that runs on a 
CUDA core; based on SIMT architecture 

• CUDA cores are the units that process the actual data one 
after another 

• A warp is a group of 32 threads for SIMT execution; 
equivalent to VPUs on CPUs 

• A kernel is a function parallelized by thread blocks and 
threads/block 

• A streaming multiprocessor (SM) is a unit that executes 
the thread block of a kernel; equivalent to cores in CPU

Example: devicequery.cu
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SIMT execution on GPUs
• Closely related to SIMD execution 

• A single instruction acts on all the data in exactly the 
same way in SIMD 

• SIMT loosens this restriction by executing instructions 
only on the active threads; accommodates branching 

• At runtime, a block of threads is divided into warps for 
SIMT execution; each contains 32 threads with 
consecutive indexes and processed by a set of 32 
CUDA cores 

• Analogous to vectorized processing unit in CPU where 
vectors are chunked into fixed size and processed by 
vector lanes
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SM of NVIDIA Tesla V100
• Divided into 4 blocks which allows for flexible scheduling (upto 2 

FP32 or INT32 or 1 FP64/cycle) 

• Each SM contains these datatypes CUDA cores: 

64 FP32 

64 INT32 

32 FP64 

• 8 Tensor cores 

• 16 Special function units 

• 4 Texture units
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Memory Hierarchy in GPUs
• Data location may have several hops to reach CUDA cores in a SM 

• Memory closer to CUDA cores: registers, L1 cache, shared 
memory, constant cache 

• Memory farther from CUDA cores: L2 cache, global memory, local 
memory, texture and constant memory 

• Memory hierarchy similar to CPUs, but capacities vary; a SM has 
larger register files, L1 cache but lower global memory than a CPU 

• Another memory considered with GPUs: host memory; data 
movement overhead reduced by sending data in larger batches
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Unified Memory System
• Single memory address space accessible from both CPU and GPU 

• Unified memory allocated via cudaMallocManaged() call returns a 
pointer accessible from any processor 

• Bytes of managed memory are first allocated on device memory, then 
host memory if needed (via page faults); Example: 
cudaunifiedmemory.cu 

• How to mitigate migration overhead between host and device in the 
above code? 

Move initialization to the device kernel 

Prefetch data to device before executing kernel 
(cudaMemPrefetchAsync())
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Kernel execution on GPU Hardware
• GPU kernels are executed on Streaming Multiprocessors (SMs) that contain CUDA cores 

• Set of 32 cores arranged in SMs to execute full warp of threads 

• Number of SMs used to execute a kernel call depends on the execution configuration: <<<x, y>>> 

• ‘x’ is the number of thread blocks and ‘y’ is the number of threads per block 

• A collection of subsequent blocks forms a grid 

• Each of the ‘x’ blocks is assigned to a different SM; each SM divides ‘y’ threads in its current block 
into warps of 32 for execution 

• SMs thus run multiple blocks independently in parallel on the GPU



INDIANA UNIVERSITY BLOOMINGTON

Kernel execution on GPU Hardware…

• Each thread has a unique global ID, 
marked by ‘index’ 

• Helps execute thread-specific code in 
parallel, rather than perform whole 
compute on each thread 

• We’ll see more in the cudaforloop.cu 
example
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CUDA C/C++ Examples
• Heterogeneous computing (executing on CPU or GPU): testgpu.cu 

• Get device statistics: devicequery.cu or via NVIDIA SMI 

• Using CUDA Events and profiler: cudaevent.cu and nvprof 

• Memory allocations with CUDA: cudamemory.cu, cuda_optimized_unifiedmem.cu, cudaprefetchunifiedmem.cu 

• Different types of memory allocations in CUDA: cudamalloctests.cu 

• Naive/True parallelization with CUDA: cudaforloop.cu and cudagridstride.cu 

• Parallelized vector addition: cuda_vectoraddition.cu, cudasaxpy.cu 

• Accelerating matrix multiplication: cuda_matrixmultiplication.cu (https://www.quantstart.com/articles/Matrix-Matrix-
Multiplication-on-the-GPU-with-Nvidia-CUDA/) 

• CUDA error handling: cuda_errorhandling.cu

https://www.quantstart.com/articles/Matrix-Matrix-Multiplication-on-the-GPU-with-Nvidia-CUDA/
https://www.quantstart.com/articles/Matrix-Matrix-Multiplication-on-the-GPU-with-Nvidia-CUDA/


Thank you


