P

Parallel Computing with CUDA

E317/517 HIGH-PERFORMANCE COMPUTING

Spring 2024

| GPU Design

* Originally used to render graphics for shading, texturing and independent polygons for 3D objects
e CPUs control and execute the logic for general-purpose computing

* Thus, GPUs thus have many more processing units and higher memory bandwidth while CPUs have
better ALU for instruction processing and faster clock speeds

Core Core

o CPUs can handle more complex workloads

L1 Cache L1 Cache

Core Core

o GPUs have more ALUs/FLUs but less capable L1 Gache L1 Cache

L2 Cache L2 Cache

L2 Cache

o CPUs have more cache memory e

o GPUs are designed for parallelizable workloads CPU GPU

Comparing the relative capabilities of the basic elements of CPU and GPU architectures.

w INDIANA UNIVERSITY BLOOMINGTON

| Applications for GPU Computing

* Floating-point heavy operations and simple data access patterns can speedup from GPUs (GPGPUSs)

e CUDA = Compute Unified Device Architecture is a programming model for general purpose (GP)
computing on NVIDIA GPUs that comes as an extension to C/C++ and Fortran

e CUDA API accelerates numerically intensive programs like matrix multiplication, FFTs, decryptions etc.

e Scientific and engineering fields leveraging CUDA and GPUs: computational fluid dynamics,
bioinformatics, molecular dynamics, computational physics, quantum chemistry, medical imaging, data
science, finance, climate/weather modeling and deep learning

* More examples can be found here: https://www.nvidia.com/en-us/accelerated-applications/

* Any downsides?

w INDIANA UNIVERSITY BLOOMINGTON

https://www.nvidia.com/en-us/accelerated-applications/

| Heterogeneous Computing

* (CPUs are designed for multi-tasking and fast serial

processing, while GPUs are designed for high Theoretcl GFLOP/s a base loc
throughput parallel tasks o= o s o
e GPUs are hosted on CPU-based systems; offload o

7500

massively parallel and numerically intensive tasks
to GPUs in heterogeneous computing

 Program flow in CUDA: 00

* Load data to CPU memory and copy to GPU

1500

1000

e (Call computation to execute on GPU device o b———— S

Peak performance in Gflop/s of GPUs and CPUs in single and double precision, 2009-2016.

e Fetch the results back to the CPU

w INDIANA UNIVERSITY BLOOMINGTON

| Execution Syntax in CUDA

 Parallel programming w/ CUDA needs NVIDIA specific GPU hardware
and CUDA toolkit installed

threadro [o[i[a[s[<[e[¢[7

e Kernelis a function to be executed on a GPU device, and can either
be called from device itself or the CPU (host); but always executes on
the device! float x = input(threadid

float y = func(x);
output[threadID] = y;

e Specified by the ___global __ specifier with an additional execution
configuration syntax <<<b, t>>>

¢ TO exeCUte CU DA COde, we need the NVIDIA CU DA Compiler (nVCC) Showing how a CUDA kernel is executed by an array of threads.
and specify the GPU architecture (or compute capability) we want to
run parallel code on.

w INDIANA UNIVERSITY BLOOMINGTON

| Compiling/Running CUDA C/C++

e Examples available here https://qithub.com/sahiltyagi4/graphalgoscuda

SPECIFICATIONS
* Access a node partition with GPUs (may have limited access!) and load Voo vigo vioos
CUDA toolkit: module load cuda/*version™ (IU GPU clusters have

9.0/9.1/10.0/10.1/11.0/11.2) DA SO o oo

Double-Precision 7TFLOPS | 7.8TFLOPS | 8.2 TFLOPS
Performance

Single-Precision

e How to choose device to run CUDA code: cudaSetDevice(),

Tensor Performance 112 TFLOPS 125 TFLOPS 130 TFLOPS

CUDA_VISIBLE_D EVICES enyv GPU Memory 32 GB /16 GB HBM2 32 GB HBM2

14 TFLOPS 15.7 TFLOPS | 16.4 TFLOPS

Memory Bandwidth 900 GB/sec 1134 GB/sec
ECC Yes
] * * * * E’Qiﬁ&?ﬁd 326B/sec | 300GB/sec | 32 GB/sec
e How to compile CUDA C/C++: nvce -arch="compute arch™ -o *target
*target.cu™ OB amtongtn| ™2 | doignutiangt
E";’; ESXZZM 250 W 300 W 250 W
Thermal Solution Passive
+ How to debug and profile CUDA code: nvprof /*target*

e Fore.g., V100 uses has compute capability 7.0 and uses architecture sm_70

w INDIANA UNIVERSITY BLOOMINGTON

https://github.com/sahiltyagi4/graphalgoscuda

| Basic CUDA Syntax and Functions

* The _global _specifier tells CUDA compiler what needs to be executed on the GPU device

* Memory allocations/manipulation in CUDA: cudaMalloc(), cudaMemcpy(), cudaMallocHost() (pinned
memory), cudaMallocManaged() (unified memory), cudaFree()

* Thread synchronization done via cudaDeviceSynchronize(), but stalls the GPU pipeline

* [ndividual threads can be accessed via threadldx, blockldx, blockDim, gridDim identifiers

e cudaEvent t built over CUDA streams gives an alternative to CPU timers without explicit device
synchronization via functions like cudaEventCreate(), cudaEventRecord() ,
cudaEventSynchronize() and cudaEventDestroy().

* cudaError_t provides error handling in CUDA (cudaGetLastError(), cudaGetErrorString())

w INDIANA UNIVERSITY BLOOMINGTON

| Thread execution in GPU

What makes GPUs great for HP parallel computing?

A thread is composed of instructions + data that runs on a
CUDA core; based on SIMT architecture

CUDA cores are the units that process the actual data one
after another

A warp is a group of 32 threads for SIMT execution;
equivalent to VPUs on CPUs

A kernel is a function parallelized by thread blocks and
threads/block

A streaming multiprocessor (SM) is a unit that executes
the thread block of a kernel; equivalent to cores in CPU

w INDIANA UNIVERSITY BLOOMINGTON

“ Tesla V100 SXM2 16GB/32GB Tesla V100 PCI-E 16GB/ Tesla V100S PCI-E Quadro GV100 32GB
32GB 32GB

GPU Chip(s) Volta GV100
Tensor FLOPS 125 TFLOPS 112 TFLOPS 130 TFLOPS
Integer Operations (INT8)* 62.8 TOPS 56.0 TOPS 65 TOPS
Half Precision (FP16)* 31.4 TFLOPS 28 TFLOPS 32.8 TFLOPS
Single Precision (FP32)* 15.7 TFLOPS 14.0 TFLOPS 16.4 TFLOPS
Double Precision (FP64)* 7.8 TFLOPS 7.0 TFLOPS 8.2 TFLOPS
On-die HBM2 Memory 16GB or 32GB
Memory Bandwidth 900 GB/s 1,134 GB/s
L2 Cache 6 MB
Interconnec t NVLink 2.0 (6 bricks) + PCI-E PCl-Express 3.0

3.0
Theoretical transfer bandwidth 300 GB/s 32 GB/s
(bidirectional)
Achievable transfer bandwidth 143.5 GB/s ~12 GB/s
of SM Units 80
of Tensor Cores 640
of integer INT32 CUDA Cores 5120
of single-precision FP32 CUDA Cores 5120
of double-precision FP64 CUDA Cores 2560

GPU Base Clock

GPU Boost Support
GPU Boost Clock
Compute Capability
Workstation Support
Server Support
Cooling Type
Wattage (TDP)

not published 1245Mhz
Yes - Dynamic
1530 MHz ~1380 MHz

7.0

300W 250W

Example: devicequery.cu

118.5 TFLOPS
59.3 TOPS
29.6 TFLOPS
14.8 TFLOPS
7.4 TFLOPS
32GB
870 GB/s

NVLink 2.0 (4 bricks) + PCI-E

3.0
200 GB/s

not published

TBM

specific server models on

Active

ly

| SIMT execution on GPUs

e C(Closely related to SIMD execution

 Asingle instruction acts on all the data in exactly the
same way in SIMD

e SIMT loosens this restriction by executing instructions
only on the active threads; accommodates branching

e At runtime, a block of threads is divided into warps for
SIMT execution; each contains 32 threads with
consecutive indexes and processed by a set of 32
CUDA cores

Volta GV100 block diagram.

 Analogous to vectorized processing unit in CPU where
vectors are chunked into fixed size and processed by
vector lanes

w INDIANA UNIVERSITY BLOOMINGTON

| SM of NVIDIA Tesla V100

 Divided into 4 blocks which allows for flexible scheduling (upto 2
FP32 or INT32 or 1 FP64/cycle)

Scheduler (32 thread/clk l

» Each SM contains these datatypes CUDA cores:

o 64 FP32 "

FP64

LoV LoV

0 64 INT32 EE

o 32 FP64

e 8 Tensor cores

FP64

Loy LY

e 16 Special function units B

e 4 Texture units

INDIANA UNIVERSITY BLOOMINGTON

LOIn

che

Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT INT

INT

INT

INT

INT

INT

INT

INT

ST ST

fPSZ FP32
:FPJZ: mz
Fpz FPa2
fPSZ FP32
fP32 FP32

FP32 FP32

FP32 FP32

Loy LDJ
ST ST

TENSOR

CORE

LD/
ST

LD/
ST

Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT INT

INT

FP32 FP32

FP32 FP32

INT

INT

INT

INT

INT

FP32 FP32

FP32 FP32

INT INT

Loy LDV
ST ST

TENSOR

CORE

LD/
ST

LD/
ST

TENSOR
CORE

TENSOR
CORE

» Warp Scheduler (32 thread/clk) |

FP64

FP64

FP64

FP64

FP64

FP64

FP64

FP64

Lo/ LoV
ST ST

FP84

FP64

FP64

FP64

FP84

FP84

FP64

FP64

Lo/ LY
ST ST

Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT | INT fpazfraz
INT FP32 FP32
INT FP32 fpaz
INT FP32FPS2 +ENSOR TENSOR

INT fPﬁjFPS! RDRE GDRE

wr [
e [

LoV Loy .LD.' [LDJF Loy Loy

ST ST ST ST ST ST

Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT INT FP32 FP32
INT FP32 1»3:
INT FP32 FP32
INT FP32FP32 ENSOR TENSOR

CORE CORE

INT Fpazfpaz
INT FP32 FP32
INT FP32 FP32
INT FP32 FP32
Loy Loy Loy Loy LDy LD/
ST ST ST ST ST ST SFU

NVIDIA Volta Streaming Multiprocessor (SM) block diagram.

] Memory Hierarchy in GPUs

 Data location may have several hops to reach CUDA cores in a SM

* Memory closer to CUDA cores: registers, L1 cache, shared
memory, constant cache

* Memory farther from CUDA cores: L2 cache, global memory, local
memory, texture and constant memory

* Memory hierarchy similar to CPUs, but capacities vary; a SM has
larger register files, L1 cache but lower global memory than a CPU

 Another memory considered with GPUs: host memory; data
movement overhead reduced by sending data in larger batches

w INDIANA UNIVERSITY BLOOMINGTON

i —————

o e ————

- —————————————————————————————————————

' !
I
b
| : 1
| | |
; T e
| ' |
| : 1
I
Constant caches I
| 7/
4

1
r . [P
‘\\ Unified data cache (128kB) } T (v64kB) ~
% 7; ~ache 7 'ﬁ
PCle NVLink
1 | Read-only

texture & constant memory

Global memory (32GB)

GPU memory levels and sizes for the NVIDIA Tesla V100.

| Unified Memory System

* Single memory address space accessible from both CPU and GPU

 Unified memory allocated via cudaMallocManaged() call returns a
pointer accessible from any processor

 Bytes of managed memory are first allocated on device memory, then ﬂ u
host memory if needed (via page faults); Example:
! i

cudaunifiedmemory.cu St

Unified Memory

e How to mitigate migration overhead between host and device in the
above code”?

o Move initialization to the device kernel

o Prefetch data to device before executing kernel
(cudaMemPrefetchAsync())

w INDIANA UNIVERSITY BLOOMINGTON

l Kernel execution on GPU Hardware

* GPU kernels are executed on Streaming Multiprocessors (SMs) that contain CUDA cores

e Set of 32 cores arranged in SMs to execute full warp of threads

* Number of SMs used to execute a kernel call depends on the execution configuration: <<<x, y>>>
e ‘X’ is the number of thread blocks and ‘y’ is the number of threads per block

* A collection of subsequent blocks forms a grid

* Each of the ‘X’ blocks is assigned to a different SM; each SM divides ‘y’ threads in its current block
into warps of 32 for execution

e SMs thus run multiple blocks independently in parallel on the GPU

w INDIANA UNIVERSITY BLOOMINGTON

| Kernel execution on GPU Hardware...

Each thread has a unique global ID,
marked by ‘index’

Helps execute thread-specific code In
parallel, rather than perform whole
compute on each thread

We’ll see more in the cudaforloop.cu
example

w INDIANA UNIVERSITY BLOOMINGTON

int numBlocks = (N + blockSize - 1) / blockSize;

int blockSize = 256;
add<<<numBlocks, blockSize>>>(N, x, y);

eridDim.x = 4096

f—%

I threadIdx.Xx threadlIdx.x threadIdx.x
[[Tz o[o[- Pl B]zs] - L[]z
AL)] X b,
W Y
blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 4095
index = blockIdx.x * blockDim.x + threadIdx.x
index = (2) * (256) + (3) = 515

| CUDA C/C++ Examples

e Heterogeneous computing (executing on CPU or GPU): testgpu.cu

e (et device statistics: devicequery.cu or via NVIDIA SMI

e Using CUDA Events and profiler: cudaevent.cu and nvprof

e Memory allocations with CUDA: cudamemory.cu, cuda_optimized unifiedmem.cu, cudaprefetchunifiedmem.cu
e Different types of memory allocations in CUDA: cudamalloctests.cu

 Naive/True parallelization with CUDA: cudaforloop.cu and cudagridstride.cu

 Parallelized vector addition: cuda_vectoraddition.cu, cudasaxpy.cu

e Accelerating matrix multiplication: cuda_matrixmultiplication.cu (https://www.quantstart.com/articles/Matrix-Matrix-
Multiplication-on-the-GPU-with-Nvidia-CUDA/)

e CUDA error handling: cuda_errorhandling.cu

w INDIANA UNIVERSITY BLOOMINGTON

https://www.quantstart.com/articles/Matrix-Matrix-Multiplication-on-the-GPU-with-Nvidia-CUDA/
https://www.quantstart.com/articles/Matrix-Matrix-Multiplication-on-the-GPU-with-Nvidia-CUDA/

Thank you

