
Parallel Computing with CUDA
E317/517 HIGH-PERFORMANCE COMPUTING

Spring 2024

INDIANA UNIVERSITY BLOOMINGTON

GPU Design
• Originally used to render graphics for shading, texturing and independent polygons for 3D objects

• CPUs control and execute the logic for general-purpose computing

• Thus, GPUs thus have many more processing units and higher memory bandwidth while CPUs have
better ALU for instruction processing and faster clock speeds

CPUs can handle more complex workloads

GPUs have more ALUs/FLUs but less capable

CPUs have more cache memory

GPUs are designed for parallelizable workloads

INDIANA UNIVERSITY BLOOMINGTON

Applications for GPU Computing
• Floating-point heavy operations and simple data access patterns can speedup from GPUs (GPGPUs)

• CUDA = Compute Unified Device Architecture is a programming model for general purpose (GP)
computing on NVIDIA GPUs that comes as an extension to C/C++ and Fortran

• CUDA API accelerates numerically intensive programs like matrix multiplication, FFTs, decryptions etc.

• Scientific and engineering fields leveraging CUDA and GPUs: computational fluid dynamics,
bioinformatics, molecular dynamics, computational physics, quantum chemistry, medical imaging, data
science, finance, climate/weather modeling and deep learning

• More examples can be found here: https://www.nvidia.com/en-us/accelerated-applications/

• Any downsides?

https://www.nvidia.com/en-us/accelerated-applications/

INDIANA UNIVERSITY BLOOMINGTON

Heterogeneous Computing
• CPUs are designed for multi-tasking and fast serial

processing, while GPUs are designed for high
throughput parallel tasks

• GPUs are hosted on CPU-based systems; offload
massively parallel and numerically intensive tasks
to GPUs in heterogeneous computing

• Program flow in CUDA:

• Load data to CPU memory and copy to GPU

• Call computation to execute on GPU device

• Fetch the results back to the CPU

INDIANA UNIVERSITY BLOOMINGTON

Execution Syntax in CUDA
• Parallel programming w/ CUDA needs NVIDIA specific GPU hardware

and CUDA toolkit installed

• Kernel is a function to be executed on a GPU device, and can either
be called from device itself or the CPU (host); but always executes on
the device!

• Specified by the __global__ specifier with an additional execution
configuration syntax <<<b, t>>>

• To execute CUDA code, we need the NVIDIA CUDA compiler (nvcc)
and specify the GPU architecture (or compute capability) we want to
run parallel code on.

INDIANA UNIVERSITY BLOOMINGTON

Compiling/Running CUDA C/C++
• Examples available here https://github.com/sahiltyagi4/graphalgoscuda

• Access a node partition with GPUs (may have limited access!) and load
CUDA toolkit: module load cuda/*version* (IU GPU clusters have
9.0/9.1/10.0/10.1/11.0/11.2)

• How to choose device to run CUDA code: cudaSetDevice(),
CUDA_VISIBLE_DEVICES env

• How to compile CUDA C/C++: nvcc -arch=*compute_arch* -o *target*
target.cu

• How to debug and profile CUDA code: nvprof ./*target*

• For e.g., V100 uses has compute capability 7.0 and uses architecture sm_70

https://github.com/sahiltyagi4/graphalgoscuda

INDIANA UNIVERSITY BLOOMINGTON

Basic CUDA Syntax and Functions
• The __global__ specifier tells CUDA compiler what needs to be executed on the GPU device

• Memory allocations/manipulation in CUDA: cudaMalloc(), cudaMemcpy(), cudaMallocHost() (pinned
memory), cudaMallocManaged() (unified memory), cudaFree()

• Thread synchronization done via cudaDeviceSynchronize(), but stalls the GPU pipeline

• Individual threads can be accessed via threadIdx, blockIdx, blockDim, gridDim identifiers

• cudaEvent_t built over CUDA streams gives an alternative to CPU timers without explicit device
synchronization via functions like cudaEventCreate(), cudaEventRecord() ,
cudaEventSynchronize() and cudaEventDestroy().

• cudaError_t provides error handling in CUDA (cudaGetLastError(), cudaGetErrorString())

INDIANA UNIVERSITY BLOOMINGTON

Thread execution in GPU
• What makes GPUs great for HP parallel computing?

• A thread is composed of instructions + data that runs on a
CUDA core; based on SIMT architecture

• CUDA cores are the units that process the actual data one
after another

• A warp is a group of 32 threads for SIMT execution;
equivalent to VPUs on CPUs

• A kernel is a function parallelized by thread blocks and
threads/block

• A streaming multiprocessor (SM) is a unit that executes
the thread block of a kernel; equivalent to cores in CPU

Example: devicequery.cu

INDIANA UNIVERSITY BLOOMINGTON

SIMT execution on GPUs
• Closely related to SIMD execution

• A single instruction acts on all the data in exactly the
same way in SIMD

• SIMT loosens this restriction by executing instructions
only on the active threads; accommodates branching

• At runtime, a block of threads is divided into warps for
SIMT execution; each contains 32 threads with
consecutive indexes and processed by a set of 32
CUDA cores

• Analogous to vectorized processing unit in CPU where
vectors are chunked into fixed size and processed by
vector lanes

INDIANA UNIVERSITY BLOOMINGTON

SM of NVIDIA Tesla V100
• Divided into 4 blocks which allows for flexible scheduling (upto 2

FP32 or INT32 or 1 FP64/cycle)

• Each SM contains these datatypes CUDA cores:

64 FP32

64 INT32

32 FP64

• 8 Tensor cores

• 16 Special function units

• 4 Texture units

INDIANA UNIVERSITY BLOOMINGTON

Memory Hierarchy in GPUs
• Data location may have several hops to reach CUDA cores in a SM

• Memory closer to CUDA cores: registers, L1 cache, shared
memory, constant cache

• Memory farther from CUDA cores: L2 cache, global memory, local
memory, texture and constant memory

• Memory hierarchy similar to CPUs, but capacities vary; a SM has
larger register files, L1 cache but lower global memory than a CPU

• Another memory considered with GPUs: host memory; data
movement overhead reduced by sending data in larger batches

INDIANA UNIVERSITY BLOOMINGTON

Unified Memory System
• Single memory address space accessible from both CPU and GPU

• Unified memory allocated via cudaMallocManaged() call returns a
pointer accessible from any processor

• Bytes of managed memory are first allocated on device memory, then
host memory if needed (via page faults); Example:
cudaunifiedmemory.cu

• How to mitigate migration overhead between host and device in the
above code?

Move initialization to the device kernel

Prefetch data to device before executing kernel
(cudaMemPrefetchAsync())

INDIANA UNIVERSITY BLOOMINGTON

Kernel execution on GPU Hardware
• GPU kernels are executed on Streaming Multiprocessors (SMs) that contain CUDA cores

• Set of 32 cores arranged in SMs to execute full warp of threads

• Number of SMs used to execute a kernel call depends on the execution configuration: <<<x, y>>>

• ‘x’ is the number of thread blocks and ‘y’ is the number of threads per block

• A collection of subsequent blocks forms a grid

• Each of the ‘x’ blocks is assigned to a different SM; each SM divides ‘y’ threads in its current block
into warps of 32 for execution

• SMs thus run multiple blocks independently in parallel on the GPU

INDIANA UNIVERSITY BLOOMINGTON

Kernel execution on GPU Hardware…

• Each thread has a unique global ID,
marked by ‘index’

• Helps execute thread-specific code in
parallel, rather than perform whole
compute on each thread

• We’ll see more in the cudaforloop.cu
example

INDIANA UNIVERSITY BLOOMINGTON

CUDA C/C++ Examples
• Heterogeneous computing (executing on CPU or GPU): testgpu.cu

• Get device statistics: devicequery.cu or via NVIDIA SMI

• Using CUDA Events and profiler: cudaevent.cu and nvprof

• Memory allocations with CUDA: cudamemory.cu, cuda_optimized_unifiedmem.cu, cudaprefetchunifiedmem.cu

• Different types of memory allocations in CUDA: cudamalloctests.cu

• Naive/True parallelization with CUDA: cudaforloop.cu and cudagridstride.cu

• Parallelized vector addition: cuda_vectoraddition.cu, cudasaxpy.cu

• Accelerating matrix multiplication: cuda_matrixmultiplication.cu (https://www.quantstart.com/articles/Matrix-Matrix-
Multiplication-on-the-GPU-with-Nvidia-CUDA/)

• CUDA error handling: cuda_errorhandling.cu

https://www.quantstart.com/articles/Matrix-Matrix-Multiplication-on-the-GPU-with-Nvidia-CUDA/
https://www.quantstart.com/articles/Matrix-Matrix-Multiplication-on-the-GPU-with-Nvidia-CUDA/

Thank you

