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Abstract—Distributed data-parallel (DDP) training improves
overall application throughput as multiple devices train on a
subset of data and aggregate updates to produce a globally shared
model. The periodic synchronization at each iteration incurs
considerable overhead, exacerbated by the increasing size and
complexity of state-of-the-art neural networks. Although many
gradient compression techniques propose to reduce communica-
tion cost, the ideal compression factor that leads to maximum
speedup or minimum data exchange remains an open-ended
problem since it varies with the quality of compression, model size
and structure, hardware, network topology and bandwidth. We
propose GraVAC, a framework to dynamically adjust compression
factor throughout training by evaluating model progress and
assessing gradient information loss associated with compression.
GraVAC works in an online, black-box manner without any
prior assumptions about a model or its hyperparameters, while
achieving the same or better accuracy than dense SGD (i.e.,
no compression) in the same number of iterations/epochs. As
opposed to using a static compression factor, GraVAC reduces
end-to-end training time for ResNet101, VGG16 and LSTM by
4.32×, 1.95× and 6.67× respectively. Compared to other adaptive
schemes, our framework provides 1.94× to 5.63× overall speedup.

Index Terms—deep learning, data-parallel training, gradient
compression, sparsification, adaptive systems

I. INTRODUCTION

Deep Learning (DL) is a supervised machine learning ap-
proach that optimizes a loss function over a non-convex surface
by comparing model predictions with ground truth. Each
training iteration in DL involves forward and backward pass,
i.e., generate predictions from input data, assess loss, compute
gradients and update model parameters via optimization method
like gradient descent. Training is an iterative process, typically
involving multiple passes over the entire dataset where each
pass is called an epoch. DL is also heavily influenced by certain
hyperparameters that affect training speed, quality, or both.
Commonly used hyperparameters are learning rate, momentum,
batch size, weight decay, epochs, activation function, etc.

Distributed data-parallel (DDP) methods further scale train-
ing across multiple nodes that train a globally shared model
with I.I.D. data (independent and identically distributed) by
periodically aggregating locally computed gradients at the end
of each iteration. The compute requirements to train DL models
doubles every 3.5 months [1], while the compute gains in chip
design for ML accelerators and bandwidth gains in telecom-
munications networks double every 24 and 18 months [2], [3].
Thus, the infrastructure required to train state-of-the-art models

tends to fall behind their compute and networking demands.
Since upgrading network stack in the cloud, datacenter and
HPC clusters can be infrequent as compared to appending new
accelerators in pre-existing systems, gradient communication
tends to be the major bottleneck in distributed training [4].

Different compression techniques have been proposed in
recent years to mitigate this synchronization overhead. However,
the optimal compression factor (CF) that minimizes data
exchange or end-to-end training time depends on the model
itself (i.e., its size, structure and depth), available network
bandwidth and the compression overhead itself. Unlike tradi-
tional HPC and distributed computing applications that only
measure parallel efficiency, DDP training has an additional
statistical efficiency associated with it. Although the amount
of computation performed on each iteration is the same, some
iterations tend to be more crucial than others towards the
overall learning of the model. Updates are especially sensitive
in early stages and to hyperparameters like learning rate
schedule, momentum and weight decay [5]. It would thus be
intuitive to compare information loss in gradients on account
of compression, and use a lower CF when considerably more
information is lost and a higher CF when most information is
preserved under compression. We can subsequently increase
compression as training continues and gradients saturate, and
decrease it back during the aforementioned critical stages.

We take into account the parallel and statistical efficiency
aspect of gradient compression in this work: a high CF
improves overall throughput (i.e., number of samples processed
per second) by reducing communication cost, but increases
information loss in the gradients resulting in either slower or
insignificant updates. The two metrics in DDP compression
are pareto-related as one improves at the detriment of the
other. We propose GraVAC: {Gra}dient {V}ariance-based
{A}daptive {C}ompression 1 to dynamically adjust CF by
comparing information loss from compression with that of
the original gradients computed in backpropagation. GraVAC
evaluates different CFs in a given search space and determines
the CF that best balances parallel and statistical efficiency in
DDP training with compression. We validate our approach over
a variety of DL models and directly compare with static CF
on compressors like Top-k [6], Deep Gradient Compression
or DGC [7], Redsync [9] and Random-k [6].

1Code available at https://github.com/sahiltyagi4/GraVAC

https://github.com/sahiltyagi4/GraVAC


TABLE 1
DL MODEL DESCRIPTION

Model Layers Size (MB) Dataset Test target
ResNet101 101 170 CIFAR10 80% Top-1

LSTM 2 252 PTB 22.0 PPL

VGG16 16 528 CIFAR100 90% Top-5

II. BACKGROUND AND RELATED WORK

DDP training can be implemented either via MPI-based
collectives (AllReduce) [10]–[12] or using one or more
centralized parameter servers (PS) [13] to accumulate and
distribute model updates among workers.

A. Scaling Efficiency of DDP Training

DL training is an iterative process that involves parameter
updates at each step via gradient descent (GD) [14]. Full GD
uses entire training data at every step, making the whole process
slow and compute-intensive, while Stochastic GD processes
a single sample and does not vectorize multiple samples on
fast accelerators. Mini-batch GD is the optimal middle ground
between Full and Stochastic GD where b samples are randomly
sampled from I.I.D. data. Eqn. (1) describes the update rule in
mini-batch GD where parameters w at (i + 1)-th iteration on
N workers minimize loss function L(·) on input samples xj
of size b from distribution Xj with learning rate η. With weak
scaling, we can increase the amount of per-iteration work by
adding more workers and keeping per-worker batch-size b the
same.

wi+1 = wi − η
1

N

n=N∑
n=1

1

|b|
∑
j∈b

∂

∂wi
L(x(j,n), wi) (1)

The ideal throughput of a distributed application TN

executed across N workers is N times the throughput of a
single worker T1 . The deviation is measured via “scaling
efficiency“ in Eqn. 2a. Assuming negligible IO overhead,
iteration time in dense SGD is bounded by computation and
communication time (Eqn. (2b)). It may be possible to overlap
communication with computation, but only partially since the
latter is comparatively much lower on modern GPUs and
TPUs. Model communication has been shown to be an order of
hundreds or even thousands of magnitudes higher than gradient
computation. Thus, frequent synchronization (tsync) is the
bottleneck that halts linear scaling in DDP. Table 1 describes
the size, density and convergence target of ResNet101 [15],
VGG16 [16] and LSTM [17] with dense SGD communication.
Latency is further exacerbated on constrained networks with
limited bandwidth as large volumes of data is exchanged by
multiple workers simultaneously.

ηscaling = TN/N · T1 (2a)

titer ≈ tcompute + tsync (2b)
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Fig. 1. Communication overhead and early critical period in DDP training.

For a DL model with a total of M parameters, the time cost
based on the α-β communication model (where α is the latency
and β is the inverse of bandwidth) for tree-based allreduce
is (2αlogN + 2MlogNβ) [18]. For ring-based allreduce, this
becomes 2(N−1)α+2Mβ(N−1)/N . Hence, communication
cost increases as more workers are added to the mix in
distributed training. Fig. 1a shows how overall throughput
deviates from the ideal as cluster-size increases. The scaling
efficiency is also influenced by the message size, i.e., total
gradients/parameters to be communicated. In dense SGD, we
observed scaling to be affected by the tensor-size distributions
across the layers of a model as well. For e.g., LSTM has a
better ηscaling than ResNet101 despite being a larger model.
This is because parameters in LSTM are spread across just 2
layers, compared to 101 in ResNet101.

B. Gradient Variance in Deep Learning

Prior work has demonstrated that gradient information can
help measure the statistical efficiency of distributed training
[19], [20]. There is a strong correlation between changes in
the eigen values of second-order hessian [21] and first-order
gradients (i.e., variance). [22], [23] explores how gradients
behave in early stages of DL training and during certain
critical periods, influenced by hyperparameters like learning
rate schedule, gradient clipping and type of SGD used (e.g.,
zero, first or second-order moments). Fig. 1b attests those
findings where we plot variance over the starting iterations and
notice how drastically the gradients change and saturate over
training.

C. Gradient Compression

Many lossy compression techniques have been proposed for
DDP and federated learning in recent years. Lossy compression
incurs a fundamental trade-off between data-size and informa-
tion loss; one can either reduce message size by losing more
information, or preserve data quality by keeping majority of the
original bits intact. In the context of DDP, higher CF reduces
communication time at the cost of accuracy degradation or more
steps/epochs required for the same convergence. CF measures
the size of original gradients to the size of compressed tensors.
E.g., compressing 10% gradients gives CF of 10x, while 1%
gives 100x. Lossy compression can be broadly classified into
quantization, sparsification or low-rank approximations.

The bit-width of single-precision (32-bit) floats is reduced
in gradient quantization. Techniques like automatic mixed
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Fig. 2. CF with maximal speedup (to reach Table 1 targets) varies for each
model and compression technique used. The results are normalized by 10x
CF while a speedup of 0.0 implies convergence failure.

precision (AMP) [24] reduces gradients to half-precision,
resulting in 2x CF. QSGD [25] balances the trade-off between
accuracy and quantization precision. 1-bit SGD [26] reduces
32-bit floats to 1-bit and propagates quantization error via
error-feedback. Sparsification methods communicate only a
fraction of the gradient values along with their indices and set
everything else to 0. Top-k sparisifies by extracting the top
k% values while Random-k does so randomly with negligible
compression overhead. DGC discards gradients below a certain
threshold along with using momentum correction and gradient
clipping. Methods like Redsync [40] combine quantization and
sparsification, but the estimation quality is not accurate [27].
Approaches like PowerSGD [28] and Pufferfish [29] achieve
compression via low-rank updates. The former can be viewed
as adding regularization in DL, while the latter performs low-
rank factorization on fully connected, convolutional and LSTM
layers.

What should be the ideal CF in Compression-based DDP?

The ideal CF is one that reduces communication time without
trimming too much gradients which can be detrimental to final
model. Compression has its own associated costs depending on
the target CF and computational complexity of the mechanism
itself. These factors affect both the parallel efficiency of
distributed training as well as statistical inefficiency due to
information loss from compression. Fig. 2 aptly demonstrates
this where the CF that gives maximum speedup varies for each
model and compression technique employed. The models are
trained to Table 1 targets. ResNet101 on Top-k achieves most
speedup at 100x, while VGG16 and LSTM peak at CFs 1000x
and 10x respectively. On the other hand, ResNet101 fails to
converge for any CF with Random-k compression. VGG16 and
LSTM converged with 10x and failed with other CFs. Although
a typical ML practitioner may not necessarily need to think
about a plethora of compression methods, choosing the right CF
with any compressor and DL model that minimizes training
time, or even converges successfully, presents a non-trivial
challenge.

Dynamic compression mechanisms like AdaQS [30] perform
quantization using gradient mean to standard deviation ratio
(MSDR). Systems like Accordion [31] and ScaDLES [32]
switch between low and high compression based on critical
regime identification. We tackle the ideal CF exploration

problem in GraVAC in a gradient-driven manner by comparing
variance of prior and post-compression gradients. For clar-
ity, prior-compression gradients refer to the original tensors
computed in backward pass. By measuring the information
lost in compression, we dynamically adjust CF over each
iteration. Starting with a low CF initially, we gradually increase
compression as training progresses. On encountering senstive
or critical regions, GraVAC switches to a lower CF that least
degrades convergence.

III. DESIGN AND IMPLEMENTATION

In this section, we first describe the trade-off between parallel
and statistical efficiency of DDP training with compression.
Then we describe the metrics “compression gain“ and “compres-
sion throughput“ to combine the two, and explain GraVAC’s
adaptive compression algorithm.

A. Parallel Efficiency of Gradient Compression

The end goal of gradient compression is to improve DDP
scaling efficiency. Application scaling is governed by the
DDP mechanism (ring-based, tree-based allreduce or parameter
servers), communication library used (MPI, NCCL [11], Gloo
[10] or RPC) and available bandwidth. Keeping the latter
and network infrastructure aside, speedup in any DL model
depends on the target CF, quality of estimation and compression
overhead. The overall iteration time in Eqn. 2b is adjusted for
compression as

t
(c)
iter ≈ tcompute + t (c)sync + t (c)compress + t

(c)
decompress

where it takes t
(c)
compress time to reduce gradients to CF c

such that it reduces communication time to t
(c)
sync . t (c)decompress

is the time taken to reconstruct the compressed gradients
to the same dimension as the original gradients. A viable
compressor must have its compression time considerably lower
than synchronization time.

The parallel efficiency of a distributed application suffers
with more workers due to higher synchronization costs. Improv-
ing the network bandwidth alleviates this to only a certain ex-
tent. [4] investigates how DDP throughput improves marginally
with higher bandwidth. They observed that ResNet50 peaks to
75% scale-out on a 25 Gbps network and remains the same even
for 100 Gbps. Its because network transport implementation
of current DL frameworks cannot fully utilize the available
network bandwidth. Thus, even though cloud providers like
GCP provide anywhere from 10-32 Gbps bandwidth depending
on the machine type and VM size, they may not be utilized to
their full potential.

Fig. 3 shows how the throughput increases and communi-
cation overhead reduces with compression. The results are
relative to CF 10x for each model. We perform layerwise DGC
compression over a 32 GPU cluster. System throughput is
determined only by compression overhead and communication
time as the compute time in backpropagation stays the same
across all CFs. Based on the compressor used, compression
latency may vary with target CF. For e.g., it decreases with
larger CF as Top-k uses max-heap and sorts the top k% elements



10x 100x 500x 1000x 2000x
CF

1

2

3

4

5

T
hr

ou
gh

pu
t

ResNet101

VGG16

LSTM

(a) Relative throughput

10x 100x 500x 1000x 2000x
CF

0.25

0.50

0.75

1.00

C
om

m
un

ic
at

io
n ResNet101

VGG16

LSTM

(b) Relative communication

Fig. 3. Throughput and communication speedup for layerwise DGC compres-
sion, normalized by 10x CF.

in O(N+k log k) time. Throughput for ResNet101 and VGG16
saturates at 500x and does not improve thereafter, while LSTM
saturates at 1000x (Fig. 3a). Communication savings also
diminish at higher CFs due to small message size and network
saturation (Fig. 3b). Thus, the highest CF may not necessarily
correspond to the largest throughput.

B. Statistical Inefficiency of Gradient Compression

Gradient compression mechanisms rely on error-feedback
[35], [36] which essentially acts as delayed updates, as com-
monly noted in asynchronous training. The gradients ineligible
for compression in the current iteration are not discarded,
but added to residual gradients which in turn are added to
gradients computed in the next iteration. Residual gradients
and error-feedback helps preserve important features and is
critical to convergence [6]–[8]. Applying compression without
error-feedback has been shown to achieve lower accuracy in
deep learning models [35]. At the same time, residual gradients
can sometimes degrade generalization performance due to stale
updates.

DDP training with very high CFs can negatively impact
training time, convergence quality, or both if the compressed
gradients are too sparse or quantized to update the model in
any significant way. It is thus crucial to have an indicator
that quantifies information loss between compressed and the
original gradients. We do so by comparing variance between
the original and compressed tensors on every iteration and
see how it relates to actual model convergence. Denoting the
original gradients as BC (Before-Compression) and compressed
tensors as AC (After-Compression), we compare BC and AC
tensors in two separate configurations with CFs 10x and 1000x
in Fig. 4, 5 and 6. We compare the convergence curves for the
two CFs with Dense SGD (i.e., no compression) to see how
much accuracy degrades with compression.

AC 10x is nearly identical to its BC counterpart in ResNet101
(Fig. 4a) while there is considerably more information loss in
between BC and AC 1000x (Fig. 4b). This translates to their
convergence curves in Fig. 4c as well where 10x and dense
SGD runs follow a similar convergence trajectory while 1000x
achieves considerably lower accuracy for the same iterations.

VGG16 follows a similar trend with 10x CF. The BC and
AC gradient variance (Fig. 5a) is nearly identical and so are
the convergence curves for 10x and Dense SGD (Fig. 5c). We
notice a slight deviation between BC and AC at 1000x initially

in Fig. 5b, which correlates to slow convergence in the early
iterations for 1000x in Fig. 5c. As the deviation BC and AC
decreases, we see both CFs converge to the same accuracy as
Dense SGD in the same iterations.

The AC 10x and 1000x gradients lie on similar scales as BC
in LSTM, although the higher CF has slightly higher variance
(Fig. 6a and 5b). As seen from Fig. 5c, Dense SGD has the
least perplexity (thus, better model quality), followed by 10x
and 1000x CFs.

To compare the information loss between the original and
gradients compressed to CF c, we define a simplistic metric
called Compression gain. As part of error feedback, we update
the gradients such that g(i)ef = g

(i)
0 + residual gradients(i−1)

for i ≥ 1. Here, g(i)0 are the original gradients calculated via
backpropagation at iteration i, while residual gradients(i−1)

are left-overs from the last iteration (i− 1) and before, which
are added back as part of error-feedback to produce g

(i)
ef for

the current iteration. With compression operator C, gradients
are compressed as g

(i)
c = C[g(i)ef ]. Compression gain is then

measured as the ratio of expected variance of compressed
gradients g

(i)
c and the original gradients modified with error-

feedback, i.e., g(i)ef :

Compression gain =
E[||g(i)c ||2]
E[||g(i)ef ||2]

In prior work, gradient noise has been well studied in deep
learning literature pertaining to divergence between locally-
computed and aggregated gradients in DDP [20], [37], [38].
These works use gradient information to tweak the global
batch-size in DDP to optimize job completion time or allocate
optimal resources for a job. Instead of looking at local and
global gradients, GraVAC’s novelty comes from evaluating
the noise between the original and compressed tensors. The
gradients computed over each iteration can be noisy. Thus,
we keep a moving average of the respective variances of
the original and compressed gradients. The computation and
memory footprint of this approach is low since the window-
size in moving average is finite and only a single-precision
floating point is stored for every iteration. Compression gain is
bounded between {0, 1] such that it is low when C trims too
much information. As models keep training, gradients saturate
and higher compression becomes more viable in later stages
of training. Hence, compression gain increases over training
as compressed tensors become more aligned with the original
gradients.

We plot compression gains for the three models when training
with fixed CF 10x and 1000x respectively, shown in Fig. 4d,
5d and 6d. In each model, 10x has higher compression gain
than 1000x since more information is preserved in the smaller
CF. It should also be apparent that Dense SGD training has a
constant gain of 1.0. For all models, convergence curve of 10x
follows a similar trajectory as Dense SGD. Correspondigly,
the compression gain of 10x stays close to 1.0 throughout. In
ResNet101, gain of 1000x is low initially and grows in an
oscillating manner, although still lower than gains of 10x and
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Fig. 4. ResNet101: Prior and Post-Compression gradients, test accuracy and compression gain for CFs 10x and 1000x.
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Fig. 5. VGG16: Prior and Post-Compression gradients, test accuracy and compression gain for CFs 10x and 1000x.
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Fig. 6. LSTM: Prior and Post-Compression gradients, test perplexity (lower is better) and compression gain for CFs 10x and 1000x.

Dense SGD. The low gains in the first 1000 iterations of CF
1000x correlates to the considerable gap between BC and AC
gradients in Fig. 4b and lower accuracy in Fig. 4c. VGG16
is more robust to higher CFs (Fig. 5c), as also seen from the
high compression gains of CF 1000x in Fig. 5d. For LSTM,
compression gain for 10x stays close to 1.0 and between 0.8-0.9
for 1000x. The proximity of the two CFs to Dense SGD’s gain
of 1.0 is equivalent to their perplexity curves in Fig. 6c. From
these results we see how compression gain serves as a viable
indicator of the statistical efficiency of DDP with compression.

C. Combining System Throughput and Compression Gain

As described earlier in II-C as well as Fig. 2, choosing a high
CF unintuitively does not necessarily improve training time
and may even degrade final model quality. Thus, to account
for both the parallel and statistical efficiency DDP training
with gradient compression, we combine system throughput
(Tsystem) and compression gain into a single metric called
Compression Throughput:

Tcompression = Tsystem × Compression gain

If CF is high, system throughput would be high as well
but compression gain would relatively be lower, decreasing

the resulting Tcompression. On the other hand, compression
gain will be high for a low CF, but system throughput will be
lower due to relatively higher communication overhead. With
Compression Throughput, we capture this pareto-relationship
between the parallel (system throughput) and statistical effi-
ciency (compression gain) of gradient compression in DDP.

We build GraVAC as a modular extension on top of
PyTorch’s [33] DDP module [34] using Python in about 3000
lines of code. A base GravacOptimizer wraps common SGD
optimizers implemented in PyTorch by extending the base
torch.optim.Optimizer class. The optimizer takes an additional
Compressor object that specifies the type of compression
technique used. We implement four pre-existing techniques as
compressor classes in this paper: Top-k, DGC, Redsync and
Random-k. Compression for the appropriate CF and its gain
is computed before the optimizer step function which applies
the aggregated gradient updates on model parameters.

GraVAC Algorithm: Alg. 1 describes GraVAC’s approach
of using compressor C to scale CFs in the exploration space
[θmin, θmax], where each candidate CF is evaluated for window
steps and incremented in step-size of θs w.r.t. θmin. For e.g.,
scaling from CF 10x to CF 20x means θs = 20/10 = 2x. The
threshold ε denotes the minimum compression gain required



Algorithm 1: GraVAC’s Adaptive Compression

1 Input: θmin, θmax, ε, θs, ω, window, compressor C
2 wo : initial model state, N: total nodes, b: per-worker

batch-size, residual = 0; Tsys,Tcompress = empty()
3 Train for i = 1,2,3... . training iterations
4 g

(i)
o , to = ∇f(x(i), wi) . backpropagation

5 g
(i)
o = g

(i)
o + residual . error-feedback

6 g
(i)
min, tmin = C(g(i)o , θmin) . compress to CF θmin

7 δmin = EWMA( ||g
(i)
min||

2

||g(i)o ||2
) . θmin compression gain

8 g
(i)
c , t

(i)
c = C(g(i)min, θs) . compress to CF (θs · θmin)

9 δc = EWMA( ||g
(i)
c ||

2

||g(i)o ||2
) . gain for CF (θs · θmin)

10 tcompress = tmin + tc . total compression time

11 if δc ≥ ε :
12 g̃(i), ts = Aggregate(g(i)c ) . synchronize g(i)c
13 residual = g

(i)
o − g(i)c . update residual

14 titer = to + tcompress + ts . iteration time
15 UpdateStep(θs · θmin, δc, titer)
16 else if δc < ε and δmin ≥ ε :
17 g̃(i), ts = Aggregate(g(i)min) . synchronize g(i)min
18 residual = g

(i)
o − g(i)min . update residuals

19 titer = to + tcompress + ts . iteration time
20 UpdateStep(θmin, δmin, titer)

21 else
22 g̃(i), ts = Aggregate(g(i)o ) . synchronize g(i)o
23 residual = 0 . no residual gradients
24 titer = to + ts . iteration time
25 UpdateStep(1, 1, titer)

26 wi+1 = wi − η · g̃(i) . apply SGD update
27 θs = CheckGraVAC(i, θs, δmin, δc)

28 procedure UpdateStep(θ, δ, titer):
29 Tsys = N · b/titer . system throughput
30 Tcompress[θ] = Tsys · δ . compression throughput

31 procedure CheckGraVAC(i, θs, δmin, δc):
32 if i % window == 0 :
33 θs = ScalingPolicy(θs) . compression scale-up

34 if ω ≥ |δmin−δc|
δmin

:

35 θmin = θs · θmin . scale-up minimum CF

36 ct = sort(Tcompress.values()) . Tcompress vals

37 if | ct[−1] − ct[−2]
ct[−2] | ≤ ω :

38 θideal = Tcompress.get(ct[−2]) . ideal CF
39 return θideal/θmin . gives optimal θs
40 else
41 return θs . else use old scaling factor

for any CF to be eligible for communication in GraVAC, while
threshold ω is used to measure saturation in compression
throughputs and for scaling up θmin. We explain this in the fol-
lowing sections in more detail. For every iteration, we compute
gradients g(i)o with model parameters wi on training sample
x(i) in time to (line 4). To incorporate error-feedback,residual
holds the leftover gradients not communicated from previous
iterations. The shape and memory size of tensors in residual
is the same as gradients itself. As shown in line 5, we add
residual gradients to the gradients computed in the current
iteration. In the first stage, we compress original gradients using
C to compressed gradients g(i)min corresponding to minimum
CF θmin (line 6). We then compute the compression gain
corresponding to θmin (line 7), and smoothen out the inter-
iteration gain through exponential weighted moving average
(EWMA) smoothing. In our evaluation, we set the EWMA
smoothing factor to N /100, where N is the number of
participating workers. We evaluate the next candidate CF by
stepping up the previous θmin and further compressing the
already compressed gradients g(i)min by stepsize θs (line 8).
Thus, candidate CF evaluated in this case is θs · θmin. This is
done as part of our multi-level compression strategy to avoid
compressing the large, original tensors g(i)o twice. We measure
the time savings of our multi-level approach in section IV-C.

Next, we compute the gradients and compression gain
of candidate CF θs · θmin (line 8-9), and denote the total
compression time tcompress as the sum of time to compress
original gradients to g

(i)
min (line 6) and the time to further

compress g(i)min to g(i)c (line 8). Based on the compression gains
obtained and threshold ε, we choose the appropriate gradients to
call the collective operation on. If the gain of our candidate CF
meets ε (line 11), we go ahead and communicate compressed
gradients g(i)c among workers. We update the residual gradients
in accord with g(i)c as well (line 13), calculate the total iteration
time (line 14) and update the system as well as compression
throughput for CF θs·θmin via UpdateStep function. Tcompress
is a dictionary or a hashmap that stores compression throughput
of each candidate CF, min-max CF as well as dense SGD setting
(i.e., CF 1x).

If the gain of g(i)c does not meet the threshold, but gain δmin
of θmin does (line 16), we instead synchronize compressed
gradients g(i)min corresponding to θmin. In a similar fashion as
before, we update the residuals, this time with g(i)min instead of
g
(i)
c (line 18), compute iteration time and assess compression

throughput. It is important to remember that synchronization
overhead to communicate g(i)min is more than g(i)c due to the
former’s lower CF. The trade-off we make in GraVAC is to incur
higher communication latency for more accurate representation
of the original gradients (measured by compression gain) and
vice-versa.

If both θmin and currently evaluated CF do not meet the
set threshold, we incur maximum communication latency by
transmitting the original gradients via dense SGD (line 22). In
this case, residual gradients are set to 0 and no compression
overhead is included as part of iteration time and computing



system/compression throughput. The CF and compression gain
are both 1, as set in the UpdateStep function at line 25.

Following SGD update (line 26), we evaluate GraVAC to
assess the performance of CFs evaluated so far. This happens
at a frequency determined by window. Here, we adjust θs by
a certain factor to scale up compression, determined by the
chosen ScalingPolicy. The scaling policy tunes compression
only until the upper bound θmax. We explore two scaling
policies in this paper that we describe in detail under section
IV-B. After scaling θs, we also assess if the minimum CF,
i.e., θmin can be scaled up as well. The intuition is that as
training progresses, model gradually starts converging as well
and we can use higher compression even for the minimum CF
later on. In addition to candidate CFs, we thus scale up the
minimum CF as well. The transition is made if the current
gain δc is within ω% of the gain of previous θmin (line 34).
Once enough CFs are evaluated, we look at the two largest
compression throughputs (line 36) and fetch the corresponding
CF if they are within the bounds of ω. We do this as it means
the compression throughput has saturated and thus, we pick the
lower CF as θideal (line 38) and send the appropriate step-size
(line 39). If the threshold ω is not met, we use θs as is.

When does compression scale-up? As seen from Alg. 1,
the compression scale-up happens during GraVAC’s evaluation
phase where we scale the step-size θs in accordance with a
specific scaling policy. At the same time, we escalate the
minimum CF θmin to currently evaluated CF if the two
compression gains are within ω% of each other.

When does compression scale-down? Compression scale-
down is determined by ε (shown via conditional statements
lines 11-25). If current CF loses considerably more information
in compressed gradients g(i)c , we use the lower CF θmin. If the
latter fails to meet ε as well, we send uncompressed gradients
g
(i)
o as a last resort.

IV. EVALUATION

A. Cluster Setup and Training Hyperparameters

We evaluate GraVAC on a 32 GPU setup on the Google
Cloud Platform (GCP) across 8 VMs. Each VM is a n1-
standard-8 machine type with 8 vCPUs, 30 GB system memory
and 4 NVIDIA V100 GPUs with 16 GB VRAM each. The
machines are configured with PyTorch 1.10.1, CUDA 11.3,
CUDA driver 465.19.01 and NCCL 2.10.3.

We evaluate the three models described in Table 1.
ResNet101 is trained with per-worker batch size 32, momentum
0.9, weight decay 0.0001 and SGD optimizer with initial
learning rate (lr) 0.1 decayed by a factor of 10 at 9K and
14K iterations respectively. VGG16 is also trained with per-
worker batch-size 32, weight decay 0.0005, momentum 0.9
and SGD with fixed lr 0.1. Lastly, LSTM is measured with
test perplexity (i.e., exponential of test loss) with per-worker
batch-size 20, momentum 0.9, weight decay 0.0001 and SGD
with fixed lr 0.1. The model is initialized with 1500 embedding
dimensions and 2 hidden layers with 35 bptt steps.

We evaluate GraVAC with different scaling policies and
look at their convergence curves (i.e. test accuracy/perplexity
vs. iterations), average compression throughput of candidate
CFs and kernel density estimates (KDE) of training iterations
using different CFs over the course of training. KDE gives
the distribution over the iterations for all CFs and plotted on
the log-scale with smoothing bandwidth of 0.1 passed to the
gaussian KDE.

B. GraVAC’s Adaptive Compression Policies

In this section, we look at how GraVAC achieves optimal
CF for a given θmin, θmax, ε, window, ω and stepsize. To
see how a model converges and communication costs vary
by evaluating different candidate CFs in the search space, we
employ an Exponential policy that upscales CFs aggressively,
and a relatively smoother Geometric scaling policy that scales
CFs as a geometric progression.

1) Exponential scaling policy: In this policy, we implement
the ScalingPolicy function from Alg. 1 such that CFs are
scaled up in exponents of 2 w.r.t the first initialized θmin.
On top of DGC, we set θmin and θmax to 10x and 1000x,
window=500 and ω=1%. So we scale up by factors of 21,
22, 24, 28 w.r.t 10x up until 1000x. The candidate CFs thus
evaluated in this policy are 10x, 20x, 40x, 160x and 1000x.
We run GraVAC on two configuration with different thresholds
on compression gain, ε = 0.7 and 0.9. The lower ε relaxes
the constraint on the gain for higher CFs to be eligible for
communication, thus achieving higher compression. A large ε
(i.e., close to 1) allows for compression only if the compressed
tensors are highly representative of the original gradients. First,
we compare these two thresholds with Dense SGD as the
latter demonstrates the ideal convergence scenario. Then, we
compare GraVAC with different compression techniques on
static CFs and look at final model accuracy, communication
savings and overall speedup.

ResNet101: Fig. 7 shows how GraVAC achieves the same
convergence as dense SGD in the same number of iterations.
The low and high ε reduce overall communication volume by
163× and 19× over dense SGD. We measure communication
volume as the ratio of cumulative single-precision floats
exchanged among workers in GraVAC relative to dense SGD.
Training cycle is slightly more volatile with compression, as
seen from the accuracy drop due to lr decay at around 9000-th
iteration. The drop is more apparent for ε = 0.7 as we continue
to train with higher CFs on account of the lower threshold.
Comparatively, ε = 0.9 is more robust to hyperparameter
tuning like lr decay as we tend to train with a lower CF
due to higher threshold. This is corroborated from Fig. 7b
which shows distribution of training iterations over the CFs.
We equally train with 10x and 1000x for ε = 0.9, while we
mostly train with 1000x for ε of 0.7. For the compression
throughputs of ε = 0.9 in Fig. 7c, it might seem counterintuitive
at first that although Tcompression is maximum for 1000x and
minimum for 10x, we still evenly train with the two CFs. This
is on account of the high threshold and because θmin did not
scale up and remained at 10x for ResNet101. Thus, whenever
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Fig. 7. ResNet101:GraVAC with ε = [0.7, 0.9] and Dense SGD.
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Fig. 8. VGG16: GraVAC with ε = [0.7, 0.9] and Dense SGD.

the compression gain of any candidate CF did not meet the
threshold, we synchronized gradients compressed at 10x. For ε
of 0.7, compression throughput was maximum for 1000x and
we trained at this CF for most iterations as the corresponding
gain easily met that threshold.

VGG16: Like ResNet101, VGG16 also converges to the
same accuracy as dense SGD within the same iterations, where
ε = 0.7 and 0.9 reduce communication volume by 80× and
13.5× over dense SGD (Fig. 9). Although Tcompression is
maximum at 1000x for ε = 0.9, the corresponding gain was
not as high to meet the threshold. Because of this, we switch
back to θmin and thus train with 10x for majority iterations
as seen from the kernel density estimates in Fig. 8b. However,
when ε was lower, we were able to find 40x CF to meet that
threshold. Tcompression corresponding to this CF was second
largest in our exploration space. As candidate CFs are evaluated
over the iterations, the model gradually converges and as a
result, compression gain improves even further on larger CFs
as training progresses. Ultimately, we arrive on θideal = 1000x
corresponding to the maximum compression throughput (Fig.
8c).

LSTM: Like the models before, GraVAC with either ε
converged in the same iterations as dense SGD training, while
reducing the communication volume by 279× and 289×
for ε of 0.9 and 0.7 respectively. Given the dataset, model
and training hyperparameters, we already saw from Fig. 6d
that compression gain for LSTM was high for both 10x and
1000x. We observed a similar trend here as compression gain
corresponding to 1000x easily satisfied both thresholds and thus,
we train with the largest available CF for most iterations (Fig.
9b). Correspondingly, the compression throughput is maximum
at this CF as well.

Further, we compare GraVAC with static CFs running on
different compression techniques. In particular, we train our
models with Top-k, DGC, Redsync and Random-k at CFs
10x and 1000x. We run each compression technique to report
the final accuracy/perplexity until it does not improve any
further, difference in convergence compared to dense SGD
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Fig. 9. LSTM: GraVAC with ε = [0.7, 0.9] and Dense SGD.

TABLE 2
GraVAC’S MODEL QUALITY AND SPEEDUP OVER STATIC CFS

Model Compression Acc./Ppl Diff. Speedup

ResNet101

Top-k 10x 80.14% +0.14% 1×
Top-k 1000x 76.4% −3.6% 3.02×

DGC 10x 80.4% +0.4% 1.23×
DGC 1000x 78.6% −1.4% 5.19×
Redsync 10x 79.4% −0.6% 1.2×

Redsync 1000x 77.4% −2.6% 6.94×
Random-k 10x - - -

Random-k 1000x - - -
GraVAC 80.2% +0.2% 4.32×

VGG16

Top-k 10x 91.2% +1.2% 1×
Top-k 1000x 90.68% +0.68% 3.22×

DGC 10x 90.8% +0.8% 0.935×
DGC 1000x 90.4% +0.4% 3.35×
Redsync 10x 90.45% +0.45% 0.99×

Redsync 1000x 90.3% +0.3% 3.6×
Random-k 10x 87.8% −2.2% 0.7×

Random-k 1000x - - -
GraVAC 90.48% +0.48% 1.95×

LSTM

Top-k 10x 22.0 +0.0 1×
Top-k 1000x 26.78 −4.78 3.36×

DGC 10x 21.67 +0.33 1.23×
DGC 1000x 25.14 −3.14 6.25×
Redsync 10x 21.65 +0.35 1.17×

Redsync 1000x 24.24 −2.24 6.9×
Random-k 10x 24.15 −2.15 1.3×

Random-k 1000x - - -
GraVAC 21.25 +0.75 6.67×

baseline from Table 1, and relative training speedup over Top-
k 10x for each model. The results are tabulated in Table 2.
We do not consider dense SGD training in this comparison
since we already established previously how GraVAC is able
to achieve the same convergence in the same iterations, and
other compression techniques have already been compared
to dense SGD in prior works. For ResNet101, 1000x CF on
Redsync, DGC and Top-k have considerably high speedups
than 10x Top-k. However, these methods at 1000x CF achieve
considerably less accuracy than Top-k at 10x. At 1000x, Top-k,
DGC and Redsync do not improve beyond 76.4%, 78.6% and
77.4% top-1 test accuracy. Random-k faild to converge at either
CF and accuracy did not improve beyond 20% . Because of
GraVAC’s adaptive scheme, we converge to 80.2% accuracy
while still reducing training time by 4.32×.



For VGG16, we previously observed that the model is already
quite robust to high compression (Fig. 5). We see that again
here for Top-k, DGC and Redsync at 1000x cross 90% accuracy
with 3.22, 3.35 and 3.6× speedup over Top-k 10x. Random-k at
10x also converged, albeit to a lower 87.8% accuracy and slower
convergence. Since GraVAC attains 90.48% test accuracy with
1.95× training speedup, other compression schemes were more
optimal in this case simply because they used high CFs.

In LSTM, GraVAC obtains the least perplexity of 21.25
while still providing maximum speedup of 6.67× over Top-k
10x. Random-k 10x converged to 24.15 perplexity and did not
improve further, while Random-k 1000x failed here again. Of
all the configurations, only Top-k, DGC and Redsync at 10x
CF and GraVAC achieved better perplexity than dense SGD.

Thus, we see how GraVAC is able to train models like
ResNet101 and LSTM to high accuracy/perplexity and still
reduce training time significantly. Static compression schemes
achieve high accuracy at low CF at the cost of high com-
munication overhead, thus providing lower speedup. Large
CFs considerably reduce communication, but the final model
quality is not at par with GraVAC. On the flip side, some
over-parameterized models like VGG16 can be robust to
compression and still converge successfully at high static CFs.

2) Geometric scaling policy: We also propose a relatively
smoother compression policy where ScalingPolicy increments
CFs as a geometric progression with common ratio 2. We
deploy GraVAC with Redsync on ResNet101 and set θmin =
10x, θmax = 2000x, ε = 0.7, window = 2000 steps and ω = 1%.
Thus, candidate CFs are 10x, 20x, 40x, 80x, 160x, 320x, 640x,
1280x and 2000x. Fig. 10a shows the accuracy curve over the
iterations. Compared to dense SGD (Fig. 7a), GraVAC with
geometric scaling converged while reducing communication
volume by 76×. In contrast to exponential scaling, convergence
is relatively slower because we evaluate each candidate CF for
a larger window size. As a result, gradients get even smaller as
GraVAC gradually arrives at larger CFs and compression gain
increases beyond ε. Thus, we see similar iteration densities from
CF 10x to 640x (Fig. 10b). After the first 7 CFs are evaluated
over 2000 steps each, we mostly train with CF 1280x from 16K
iterations onward (because 8 × 2000 = 16000). We did not
scale to 2000x in our evaluation since compression throughput
for 1280x and 2000x was 1029.9 and 1035.4, which falls
within ω’s bound of 1%. This case highlights the effectiveness
of GraVAC such that it does not scale the CF beyond a point
when it stop improving the parallel or statistical efficiency of
gradient compression. In this case, GraVAC does not compress
beyond 1280x as it corresponds to the maximum compression
throughput (and at a lower CF of 1280x compared to 2000x).

C. Gains of Multi-level Compression in GraVAC

Alg. 1 explains how at each iteration, GraVAC scales
compression from initial θmin to current CF being evaluated
(i.e., θc), up to the maximum allowed θmax. Thus, compressing
the original gradients (computed over backward pass) twice;
i.e., once over θmin and then again on θc can incur significant
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Fig. 10. ResNet101: GraVAC with Geometric scaling policy.

overhead, especially on larger models. The latency of a
compressor may vary with the size of the tensor to compress
as well as the target CF. To reduce the cumulative overhead
of compressing original tensors multiple times, we apply a
multi-level compression scheme as follows: given a compressor
C and tensor X to be compressed to CFs θ1 and θ2 such that
θ2 > θ1, rather than compressing each CF on X as:

X1 = C(θ1,X ) and X2 = C(θ2,X )

to produce compressed tensors where |X2| < |X1| < |X |. In
GraVAC, we first compute X1 and then compress this tensor
to θ

′

2 to produce X ′

2:

X1 = C(θ1,X ) =⇒ X
′

2 = C(θ
′

2,X1) : θ
′

2 =
θ2
θ1

The resulting tensor X ′

2 is such that X ′

2 = X2 for θ
′

2 = θ2/θ1.
The appeal of doing so is that the second compression operation
is applied on a smaller tensor X1 instead of X again. We
tabulate the savings of multi-level compression in Table 3.
Let’s consider a scaling case of GraVAC where θmin = 10x
and current CF evaluated is 1000x. Then multilevel GraVAC
first compresses to 10x and then further compresses the reduced
tensors to 100x, i.e., θ1 = 10x and θ

′

2 = 100x so that θ2 =
1000x. In direct approach, we first compress original gradients
to 10x, then compress the original gradients again to 1000x.
From our results, we see that multi-level compression is at
least 1.1× and up to 1.83× faster than directly compressing
the original tensors twice.

D. Comparing GraVAC with Prior Art

In this section, we compare GraVAC with another adaptive
scheme called Accordion [31]. For the three models, we use
bounds of Rank-1 and Rank-4 for compression in Accordion,
as described in [31] and compare with GraVAC in terms of
communication and time savings (i.e., training speedup) to
achieve the same test accuracy/perplexity. The savings are
normalized by Accordion’s performance for each respective
model, shown in Table 4. For ResNet101, GraVAC reduces
total communication volume by 44.5× and reduces training
time by 1.94× over Accordion. GraVAC speeds up training by
5.63× over Accordion for communication-heavy models like
VGG16. In LSTM training, GraVAC converges twice as fast
by reducing communication volume up to 104.2×.



TABLE 3
GraVAC’S MULIT-LEVEL (MTL) COMPRESSION SPEEDUP

Model Method Direct (ms) MTL (ms) Speedup

ResNet101

Top-k 606 332 1.83×
DGC 90 59 1.52×

Redsync 33 29.8 1.1×
Random-k 23 14 1.64×

VGG16

Top-k 181 121 1.49×
DGC 122 95.5 1.27×

Redsync 101.4 87.7 1.16×
Random-k 41.6 31 1.34×

LSTM

Top-k 200 126 1.59×
DGC 88 63 1.4×

Redsync 69.4 46.4 1.5×
Random-k 56.4 37.4 1.5×

TABLE 4
GraVAC VS. ACCORDION: COMMUNICATION AND TIME SAVINGS

Model Method Floats sent Comm. sav. Time sav.

ResNet101
Accordion 4.17 ×1011 1× 1×
GraVAC 9.38× 109 44.5× 1.94×

VGG16
Accordion 3.83 ×1011 1× 1×
GraVAC 1.7× 1010 22.4× 5.63×

LSTM
Accordion 4.2 ×1011 1× 1×
GraVAC 4× 109 104.2× 2.06×

Accordion is based on detecting critical regions during
training, i.e., when inter-iteration gradients computed in back-
ward pass change significantly and cross a certain user-defined
threshold. Accordion switches between 2 compression factors
such that it uses the low CF in critical regions and the higher CF
otherwise. On the other hand, GraVAC looks at information
loss on account of compression (i.e., statistical efficiency)
and not just relative gradient change in sensitive regions of
training. That is, GraVAC looks at intra-iterations gradients as
well (between original and gradients compressed at different
CFs). Additionally, GraVAC scales compression across a wider
range and carefully inspects intermediary CFs as potential
compression candidates. Thus, we obtain higher speedups when
training with GraVAC.

1) GraVAC vs. Accordion on Random-k Compression: We
previously saw in Fig. 2b and Table 2 that ResNet101 failed to
converge at any CF with Random-k compression. In this section,
we present a special case of using Random-k under the hood
with both GraVAC and Accordion. Although the compression
quality of Random-k is lower compared to other compressors,
we present this as a special case to demonstrate how GraVAC
is more dynamic and operates at a finer granularity. We launch
GraVAC with Random-k on θmin = 1.5x, θmax = 1000x,
window = 2000 and ε = 0.7. The CFs are scaled up via
geometric scaling policy. Accordion was also deployed with
the same min-max bounds on CF as GraVAC, i.e., low CF =
1.5x and high CF = 1000x. The convergence curves comparing
GraVAC and Accordion are shown in Fig. 11a. Unlike static 10x
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Fig. 11. GraVAC and Accordion on Random-k compression.

Random-k compression (Fig. 2b) that failed to converge, we
were able to achieve to 78% top-1 test accuracy for ResNet101
with GraVAC. The CFs used for training by GraVAC were
1.5x, 3x, 6x, 12x, 24x and 48x. All candidate CFs beyond this
were ignored as they did not meet the required threshold of ε.
CF 12x has the highest density, implying most iterations used
this CF for training (Fig. 11b). Correspondingly, compression
throughput is maximum for this CF as well. Compared to dense
SGD, we reduced overall communication volume by 18×.

As for Accordion on Random-k, we see in Fig. 11a that
training saturates at 20% accuracy. This is because Accordion
does not consider the efficacy of the compression technique
itself, and only switches between a low and high CF if the
uncompressed, inter-iteration gradients change beyond a certain
measure. With a low CF 1.5x, information loss in Random-k
was too high to update ResNet101 in a meaningful way.

V. CONCLUSION

Gradient noise has previously been used as a scalability
indicator for batch and cluster-size scaling in deep learning [19],
[20], [37]–[39]. Adaptive compression schemes like Accordion
[31] switch between two compression levels based on when
the inter-iteration gradients change by some margin. GraVAC’s
key insight is to tweak compression factor over the course
of training while balancing the pareto-relationship between
parallel and statistical efficiency in gradient compression.
We use “compression gain“ to measure information loss on
account of compression and choose a CF appropriately. In
our evaluation, we see that GraVAC converges 1.95 to 6.67×
faster than choosing a static CF, while converging in the same
number of iterations as dense SGD. Compared to Accordion,
we observed up to 5.63× reduction in end-to-end training time.

One should be mindful when training models with GraVAC
as it introduces parameters like compression threshold (ε)
and window size that may affect overall training performance.
Setting too small a window size may result in poor convergence
as all the candidate CFs may be exhausted while the model
is still in early training stages and gradients are still volatile.
As for ε, choosing a very small threshold may enable high
compression but may lead to model degradation by allowing
high CF gradients from the beginning that will not update the
model in a significant way.
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