GraVAC: Adaptive Compression for
Communication-Efficient Distributed DL
Training

Sahil Tyagi and Martin Swany

INDIANA UNIVERSITY BLOOMINGTON IEEE CLOUD 2023

Need for Distributed Training

« Size of deep learning (DL) models has grown
exponentially in the last 5 years:

- 2018: GPT-1 (100M+), BERT (340M+)

« 2019: Transformer-XL (275M+), GPT-2 (1B+)
« 2020: BART (140M+), Turing-NLG (17B+)

- 2021: ViT (630M+), DALL-E (12B+)

- 2022/2023: Stable Diffusion (890M+), GPT-3.5
(1.3B+, 6B+ and 175B+)

Assuming
single-precision
floats
parameters Model-size

106 4 MB
107 40 MB
10% 400 MB
10° 4 GB

s

©

o

- <
\

Distributed Data-Parallel (DDP) Training

Gradient 1 S 1 g
. Vit =93y 2, D
Aggregation i+1 i—n N b (x X(jny)
N
9 9 8 _/
Averaged Averaged Averaged
gradients gradients gradients
: : ; ; VGG16
Compute| i |Compute| : i |Compute 30 4 - —_
gradients| | . |gradients| i |gradients DS
/‘L\ a 60 ~
©
. 1 . H R :_:3
Minibatch | 1 i [Minibatch| | i |Minibatch @ 40 -
b ' ' b ' : b ‘g
N [— N=1
--- 20 - N=4
Worker1 Worker2 Worker3 —— N=8

2K 4K 6K 8K 10K 12K 14K
Training steps

DDP training challenges

« Each training-step time attributed to 10
overhead, loss and gradient computation
and gradient synchronization

tstep ~ tcompute - tsync + tIO
Cmain bottleneck!)

» The parallelizability of a job can be measured
from its scaling efficiency

TN
”scaling = N-T
41

E 4

41 B toompute
e tsync

34

24

14

0-

ResNet101 VGG16 LSTM

0.7
~——— ResNet101
— VGG16
— LSTM
2 0.5 \’\0—0_4
= 0.3 \\\
0.1 2 4 8 12 16

Workers

Gradient compression for DDP training

» Gradient compression alleviates communication
bottleneck and speeds up training

* What should be the ideal compression
compression factor (CF) with lossy compression?

* Reduces tensor volume to communicate
» Should not trim too much gradients

* Has acceptable compression overhead

C Statistical aspect) C Parallel aspect)
E 5

0.50 A

0.25 A

Top-k

EEm ResNetl01
4 W VGG16
EE LSTM

10x

100x

Random-k

1000x

I ResNetl01
m VGG16
I LSTM

10x

Parallel aspect of Gradient Compression

» To improve scaling efficiency, lossy methods
reduce communication but introduce additional
compression overhead

t(Cf) ~t + t(cf) +¢ (Cf)

step compute * tIO sync compress—decompress

depends on depends on
CF ‘cf’ and compression
collective op method and ‘cf

5 Y — 3
=4 Y ol
3 //’
= PR SEE Ty & .
%03 o T
3 R ResNethl
) /:,’/ --o- VGG16

& -+~ LSTM
1 @&
10x 100x 500x ~ 1000x 2000x
CF

Statistical aspect of Gradient Compression

* Does information loss in compression correlate to model convergence?

* Can be seen from prior and post-compression gradients (BC and AC)

0 = o) 4 7 (=1 @) — (&) : @& — @ @)
= residual and =C = residual'’ = -
’gef ‘(510 ;gcf A [gef] gef gcf
error-feedback | S a \
Lo gina compresse
critical for convergence gradients gradients Compressor op ‘
ELI1g$11°]
L - , - - cf
Is there an empirical indicator to measure this information loss? Compressmn gain = D112
|E l
higher compression can degrade model convergence or require more training! | | | gef | |]
ResNet101 30 L0
g 100 — BC 4000 —t—--BG . <
g 75 —— AC 10x 2000 —— AC 1000x §60 %00‘7 [
£ 50 2000 % 40 10x CF 80,4 —— 1000x CF
= g —— 1000x CF g
S % 100 K =2 —— Dense SGD S 0.1
0 200 400 600 800 1000 0 200 400 600 800 1000 0 10000 20000 30000 40000 0 500 1000 1500 2000
Iterations Iterations Iterations Iterations

E 7

GraVAC’s approach

How to choose a CF that considers both the parallel
and statistical aspect of gradient compression in DDP

training?
Tcompression = Tsystem X CompreSSion gain
It would be optimal to use low compression in early

training phase and higher compression as the model
converges and gradients become smaller!

ML framework (Tensorflow, PyTorch etc.)

Communication backend (TCP, MPI, NCCL)

worker

worker

GraVAC = Gradient Variance-based Adaptive Compression

E 8

worker

GraVAC’s Adaptive Compression

Parameters: CF exploration space [cf,;,,, €f,,,.<], Window-size W, compression step-size ¢,
gain threshold €, gain/compression throughput saturation threshold w

ggi) = Vf(xD, w;) (l) . C(g(’) c) effecti(\j/ely comgr;:assfes original
: min’ radients to C
gr(ril)n = (g(l)’ Cfmin) | | l) | | ’ —
> 8¢
118 | o, = W
min =
189117 50

« IF 6, > € THEN: aggregate compressed gradients g(’)
« IF 5. < € AND ¢6,,;,, > € THEN: aggregate compressed gradients g

« IF 5. < € AND §,,,, < € THEN: aggregate original gradients gé’;)

ﬂ 9

GraVAC’s Adaptive Compression

» Based on the exploration space and compression step-size, all candidate CFs are
evaluated

Omin — O.
IF @ > | —————| THEN: scale up minimum CF as cf,; = cf .. - ¢,

min

« Once all candidate CFs are evaluated, choose one where T saturates

compression

- Compression scales-up by increasing cf,;,, based on ¢, and @

« Compression scales-down according to threshold €

Experimental Evaluation

* GraVAC implemented atop PyTorch 1.10.1 and torch.distributed module

« Evaluated on image and text datasets across 3 popular DL models: ResNet101, VGG16
and LSTM

* Deployed over 32 V100 GPUs on the Google Cloud Platform (n7-standard-8 VMs)

* Compared with static compression techniques like Top-k, DGC, Redsync and
Random-k

Multi-level compression scaling

« CFs evaluated in the range [cf... , cf in steps of ¢
g [min’ max] p S Multi-level (MTL) compression speedup for 10-1000x

« Compressing original gradients (i.e., gg)) twice can incurs 20
additional compression overhead (i.e., to ggl)in and gg))

DGC BN Random-k
1.6 A

X, =C(c, X) 2 141 I_‘ I_l
X, =C(c, X) | ey >cpand | X, | < |X| <|X] 1.2
1.0 -

* Multi-level compression reduces this overhead by restienior veere ik
avoiding computation on massive tensors twice!

BN Top-k WM Redsync

=
©
L

Relative Speedup

Xl - C(Cl’ X)

’ ’ ’ C ’
X2 = C(CZ’ X]) . Cz = C_2 and |X2| = |X2|
1

Results

 Train models with CF space [10x, 1000x], w=500 steps, @=1%, € values 0.7 and 0.9 and
C, increased exponentially

ResNet101
75
_ . 1400
3 a
& .
3 ' <50 £ 1200
[e] S

® =] g
"E e=0.7 g 2.5 < 1000

40 ‘ I —— Dense SGD - /\ J/\

7000 14000 21000 28000 35000 42000 0.00 =g 2 103 804 51 10? 108

Iterations CF CF

* Compared to dense-SGD, GraVAC reduces communication volume by 19-163x and
achieves the same final accuracy!

* VGG16 on GraVAC reduce communication volume by 13-80x; On LSTM by 279-289x

GraVAC vs. Static compression

» Compared with fixed CFs 10x and 1000x on Top-k, DGC, Redsync and Random-k

» Overall Speedup reported w.r.t. Top-k 10x.

» Accuracy/Perplexity drop reported w.r.t. Dense-SGD.

ResNet101 VGG16

114

N 10x
s 1000x
mmm GraVAC

Overall Speedup
B
Overall Speedup
N w

-

o

|
i

N 10x
s 1000x
mmm GraVAC

Accuracy Drop
Accuracy Drop

|
N

Top-k DGC Redsync Random-k GraVAC Top-k DGC Redsync Random-k GraVAC

14

Overall Speedup

Perplexity Drop

LSTM

N 10x
s 1000x
mmm GraVAC

Top-k

DGC

Redsync Random-k GraVAC

o
£
* <

GraVAC and Accordion with Random-k

ResNet101

» Despite its low compression overhead, Random-k fails
to converge in many cases

D
o

— GraVAC
Accordion

* We compare GraVAC with Accordion; both using
Random-k compression under the hood

Test accuracy
=

[\l
[es}

5000 11000 17000 23000 29000 35000
Iterations

exploration space set to [1.5x, 1000x], w = 2000, ¢ = 0.7, ¢, = 2
GraVAC CF distribution and T

compression

Accordion changes CF based on critical regions in 50 Kernel densi

training; GraVAC looks at how much information is —
lost via compression and makes trade-offs between

system throughput and accurate gradient
representation 450 /S —q

BN |

compression,

t

650

w

:Z—‘(:()m pression

Ll
a
X
c
ke
i
©
o
9]
=

10!
CF

GraVAC vs. Accordion

Model Method Floats sent Comm. sav. | Time sav.
: 11
ResNet101 Accordion 4.17 x10 1x 1x
GraVAC | 9.38 x 10° 44.5% 1.94 %
: 11
VGG16 Accordion 3.83 x10 1x 1Xx
GraVAC 1.7 x 1010 22.4X 5.63 %
- 11
LSTM Accordion 4.2 x10 1x 1x
GraVAC 4 x 10° 104.2x 2.06 X

16

Related work

* Gradient noise: Johnson et al. (AdaScale), Luo et al. (KungFu), Aurick et al. (Pollux), Tyagi et
al. (Scavenger)

* Gradient compression: Fang et al. (Accelerating Distributed Deep Learning Training with
Gradient Compression), Lin et al. (Deep Gradient Compression: Reducing the
Communication Bandwidth for Distributed Training), Stitch et al. (Sparsified SGD with
Memory)

* Early phase/Critical region in DNN training: Jonathan et al. (The Early Phase of Neural
Network Training), Alessandro et al. (Critical Learning Periods in Deep Neural Networks)

* Adaptive gradient compression: Aggarwal et al. (Accordion: Adaptive Gradient
Communication via Critical Learning Regime Identification)

Conclusion

J Compression gain helps measure the relative information loss due to compression

. Compression throughput works as an effective heuristic to balance the parallel gains of lossy compression
and statistical inefficiency of losing gradient information

0 GraVAC converges 1.95 - 6.7x faster than a static CF, while achieving the same convergence as dense-SGD

. Future directions:
. GraVAC on large language models
. Adaptive compression in model-parallelism

. Upstream-downstream adaptive compression with Parameter servers in Federated Learning

Thank you!

GraVAC: Adaptive Compression for Communication-Efficient
Distributed DL Training

19

