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Need for Distributed Training
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• Size of deep learning (DL) models has grown 
exponentially in the last 5 years:


• 2018: GPT-1 (100M+), BERT (340M+)


• 2019: Transformer-XL (275M+), GPT-2 (1B+)


• 2020: BART (140M+), Turing-NLG (17B+)


• 2021: ViT (630M+), DALL-E (12B+)


• 2022/2023: Stable Diffusion (890M+), GPT-3.5 
(1.3B+, 6B+ and 175B+)
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Distributed Data-Parallel (DDP) Training
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DDP training challenges
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• Each training-step time attributed to IO 
overhead, loss and gradient computation 
and gradient synchronization

tstep ≈ tcompute + tsync + tIO

main bottleneck!

• The parallelizability of a job can be measured 
from its scaling efficiency

ηscaling =
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Gradient compression for DDP training
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• Gradient compression alleviates communication 
bottleneck and speeds up training

• What should be the ideal compression 
compression factor (CF) with lossy compression?

• Reduces tensor volume to communicate

• Should not trim too much gradients

• Has acceptable compression overhead

Parallel aspectStatistical aspect



Parallel aspect of Gradient Compression
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• To improve scaling efficiency, lossy methods 
reduce communication but introduce additional 
compression overhead

t(cf )
step ≈ tcompute + tIO + t(cf )

sync + t(cf )
compress−decompress
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Statistical aspect of Gradient Compression
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• Does information loss in compression correlate to model convergence?

g(i)
ef = g(i)

0 + 𝗋𝖾𝗌𝗂𝖽𝗎𝖺𝗅(i−1) and g(i)
cf = C[g(i)

ef ] ⟹ 𝗋𝖾𝗌𝗂𝖽𝗎𝖺𝗅(i) = g(i)
ef − g(i)

cf

compressed 
gradients

original 
gradients

higher compression can degrade model convergence or require more training!
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Is there an empirical indicator to measure this information loss? 𝖢𝗈𝗆𝗉𝗋𝖾𝗌𝗌𝗂𝗈𝗇 𝗀𝖺𝗂𝗇 =
𝔼[ | |g(i)

cf | |2 ]

𝔼[ | |g(i)
ef | |2 ]

Compressor op

ResNet101

• Can be seen from prior and post-compression gradients (BC and AC)



GraVAC’s approach
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GraVAC

ML framework (Tensorflow, PyTorch etc.)

Communication backend (TCP, MPI, NCCL)

worker worker worker

ML model

GraVAC = Gradient Variance-based Adaptive Compression

How to choose a CF that considers both the parallel 
and statistical aspect of gradient compression in DDP 
training? 

Tcompression = Tsystem × 𝖢𝗈𝗆𝗉𝗋𝖾𝗌𝗌𝗂𝗈𝗇 𝗀𝖺𝗂𝗇

It would be optimal to use low compression in early 
training phase and higher compression as the model 
converges and gradients become smaller!



GraVAC’s Adaptive Compression
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g(i)
o = ∇f (x(i), wi)

g(i)
min = C(g(i)

o , cfmin)
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δc =
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c | |2
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effectively compresses original 
gradients to CF cfmin ⋅ cs

• IF  THEN: aggregate compressed gradients δc ≥ ϵ g(i)
c

• IF  THEN: aggregate compressed gradients δc < ϵ AND δmin ≥ ϵ g(i)
min

• IF  THEN: aggregate original gradients δc < ϵ AND δmin < ϵ g(i)
o

corresponding residual gradients are updated; 
 and  are calculated for 

each 
Tsystem Tcompression

(cf, δ )

Parameters: CF exploration space , window-size , compression step-size , 
gain threshold , gain/compression throughput saturation threshold  

[cfmin, cfmax] w cs
ϵ ω



GraVAC’s Adaptive Compression
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IF    THEN: scale up minimum CF as ω ≥ |
δmin − δc

δmin
| cfmin = cfmin ⋅ cs

• Based on the exploration space and compression step-size, all candidate CFs are 
evaluated

• Once all candidate CFs are evaluated, choose one where  saturatesTcompression

• Compression scales-up by increasing  based on  and cfmin cs ω

• Compression scales-down according to threshold  ϵ



Experimental Evaluation
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• GraVAC implemented atop PyTorch 1.10.1 and torch.distributed module


• Evaluated on image and text datasets across 3 popular DL models: ResNet101, VGG16 
and LSTM 

• Deployed over 32 V100 GPUs on the Google Cloud Platform (n1-standard-8 VMs)


• Compared with static compression techniques like Top-k, DGC, Redsync and 
Random-k



Multi-level compression scaling
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• CFs evaluated in the range  in steps of [cfmin, cfmax] cs

• Compressing original gradients (i.e., ) twice can incurs 
additional compression overhead (i.e., to  and )

g(i)
o

g(i)
min g(i)

c

• Multi-level compression reduces this overhead by 
avoiding computation on massive tensors twice!

X1 = C(c1, X )
X2 = C(c2, X ) | c2 > c1 and |X2 | < |X1 | < |X |

X1 = C(c1, X )

X ′ 
2 = C(c′ 

2, X1) : c′ 
2 =

c2

c1
and |X2 | = |X ′ 

2 |

Multi-level (MTL) compression speedup for 10-1000x

MTL 1.1-1.83x 
faster than direct 

compression!



Results
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• Train models with CF space [10x, 1000x], w=500 steps, =1%,  values 0.7 and 0.9 and 
 increased exponentially

ω ϵ
cs
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• Compared to dense-SGD, GraVAC reduces communication volume by 19-163x and 
achieves the same final accuracy!

• VGG16 on GraVAC reduce communication volume by 13-80x; On LSTM by 279-289x 



GraVAC vs. Static compression
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• Compared with fixed CFs 10x and 1000x on Top-k, DGC, Redsync and Random-k 

• Overall Speedup reported w.r.t. Top-k 10x. 

• Accuracy/Perplexity drop reported w.r.t. Dense-SGD.



GraVAC and Accordion with Random-k
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• Despite its low compression overhead, Random-k fails 
to converge in many cases 

• We compare GraVAC with Accordion; both using 
Random-k compression under the hood
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Accordion changes CF based on critical regions in 
training; GraVAC looks at how much information is 
lost via compression and makes trade-offs between 

system throughput and accurate gradient 
representation

GraVAC CF distribution and Tcompression



GraVAC vs. Accordion
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Related work
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• Gradient noise: Johnson et al. (AdaScale), Luo et al. (KungFu), Aurick et al. (Pollux), Tyagi et 
al. (Scavenger)


• Gradient compression: Fang et al. (Accelerating Distributed Deep Learning Training with 
Gradient Compression), Lin et al. (Deep Gradient Compression: Reducing the 
Communication Bandwidth for Distributed Training), Stitch et al. (Sparsified SGD with 
Memory)


• Early phase/Critical region in DNN training: Jonathan et al. (The Early Phase of Neural 
Network Training), Alessandro et al. (Critical Learning Periods in Deep Neural Networks)


• Adaptive gradient compression: Aggarwal et al. (Accordion: Adaptive Gradient 
Communication via Critical Learning Regime Identification)



Conclusion
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• Compression gain helps measure the relative information loss due to compression


• Compression throughput works as an effective heuristic to balance the parallel gains of lossy compression 
and statistical inefficiency of losing gradient information


• GraVAC converges 1.95 - 6.7x faster than a static CF, while achieving the same convergence as dense-SGD

• Future directions:


• GraVAC on large language models


• Adaptive compression in model-parallelism


• Upstream-downstream adaptive compression with Parameter servers in Federated Learning



Thank you!
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GraVAC: Adaptive Compression for Communication-Efficient 
Distributed DL Training


