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Need for Distributed Training

« Size of deep learning (DL) models has grown
exponentially in the last 5 years:

- 2018: GPT-1 (100M+), BERT (340M+)

«  2019: Transformer-XL (275M+), GPT-2 (1B+)
«  2020: BART (140M+), Turing-NLG (17B+)

- 2021: ViT (630M+), DALL-E (12B+)

- 2022/2023: Stable Diffusion (890M+), GPT-3.5
(1.3B+, 6B+ and 175B+)
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Distributed Data-Parallel (DDP) Training
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DDP training challenges

« Each training-step time attributed to 10
overhead, loss and gradient computation
and gradient synchronization

tstep ~ tcompute - tsync + tIO
Cmain bottleneck!)

» The parallelizability of a job can be measured
from its scaling efficiency

TN
”scaling = N-T
41

E 4

41 B toompute
e tsync

34

24

14

0-

ResNet101 VGG16 LSTM

0.7
~——— ResNet101
— VGG16
— LSTM
2 0.5 \’\0—0\_4
= 0.3 \\\
0.1 2 4 8 12 16

Workers




Gradient compression for DDP training

» Gradient compression alleviates communication
bottleneck and speeds up training

* What should be the ideal compression
compression factor (CF) with lossy compression?

* Reduces tensor volume to communicate
» Should not trim too much gradients

* Has acceptable compression overhead
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Parallel aspect of Gradient Compression

» To improve scaling efficiency, lossy methods
reduce communication but introduce additional
compression overhead

t(Cf) ~t + t(cf) +¢ (Cf)
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Statistical aspect of Gradient Compression

* Does information loss in compression correlate to model convergence?

* Can be seen from prior and post-compression gradients (BC and AC)
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GraVAC’s approach

How to choose a CF that considers both the parallel
and statistical aspect of gradient compression in DDP

training?
Tcompression = Tsystem X CompreSSion gain
It would be optimal to use low compression in early

training phase and higher compression as the model
converges and gradients become smaller!

ML framework (Tensorflow, PyTorch etc.)

Communication backend (TCP, MPI, NCCL)

worker

worker

GraVAC = Gradient Variance-based Adaptive Compression
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GraVAC’s Adaptive Compression

Parameters: CF exploration space [cf,;,,, €f,,,.<], Window-size W, compression step-size ¢,
gain threshold €, gain/compression throughput saturation threshold w
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« IF 6, > € THEN: aggregate compressed gradients g(’)
« IF 5. < € AND ¢6,,;,, > € THEN: aggregate compressed gradients g

« IF 5. < € AND §,,,, < € THEN: aggregate original gradients gé’;) .........
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GraVAC’s Adaptive Compression

» Based on the exploration space and compression step-size, all candidate CFs are
evaluated

Omin — O.
IF @ > | —————| THEN: scale up minimum CF as cf,; = cf .. - ¢,

min

« Once all candidate CFs are evaluated, choose one where T saturates

compression

- Compression scales-up by increasing cf,;,, based on ¢, and @

« Compression scales-down according to threshold €




Experimental Evaluation

*  GraVAC implemented atop PyTorch 1.10.1 and torch.distributed module

« Evaluated on image and text datasets across 3 popular DL models: ResNet101, VGG16
and LSTM

*  Deployed over 32 V100 GPUs on the Google Cloud Platform (n7-standard-8 VMs)

*  Compared with static compression techniques like Top-k, DGC, Redsync and
Random-k




Multi-level compression scaling

« CFs evaluated in the range [cf... , cf in steps of ¢
g [ min’ max] p S Multi-level (MTL) compression speedup for 10-1000x

« Compressing original gradients (i.e., gg)) twice can incurs 20
additional compression overhead (i.e., to ggl)in and gg))
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* Multi-level compression reduces this overhead by restienior veere ik
avoiding computation on massive tensors twice!
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Results

 Train models with CF space [10x, 1000x], w=500 steps, @=1%, € values 0.7 and 0.9 and
C, increased exponentially
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* Compared to dense-SGD, GraVAC reduces communication volume by 19-163x and
achieves the same final accuracy!

* VGG16 on GraVAC reduce communication volume by 13-80x; On LSTM by 279-289x




GraVAC vs. Static compression

» Compared with fixed CFs 10x and 1000x on Top-k, DGC, Redsync and Random-k

» Overall Speedup reported w.r.t. Top-k 10x.

» Accuracy/Perplexity drop reported w.r.t. Dense-SGD.
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GraVAC and Accordion with Random-k

ResNet101

» Despite its low compression overhead, Random-k fails
to converge in many cases

D
o

— GraVAC
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* We compare GraVAC with Accordion; both using
Random-k compression under the hood
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GraVAC vs. Accordion

Model Method Floats sent Comm. sav. | Time sav.
: 11
ResNet101 Accordion 4.17 x10 1x 1x
GraVAC | 9.38 x 10° 44.5% 1.94 %
: 11
VGG16 Accordion 3.83 x10 1x 1Xx
GraVAC 1.7 x 1010 22.4X 5.63 %
- 11
LSTM Accordion 4.2 x10 1x 1x
GraVAC 4 x 10° 104.2x 2.06 X
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Related work

* Gradient noise: Johnson et al. (AdaScale), Luo et al. (KungFu), Aurick et al. (Pollux), Tyagi et
al. (Scavenger)

* Gradient compression: Fang et al. (Accelerating Distributed Deep Learning Training with
Gradient Compression), Lin et al. (Deep Gradient Compression: Reducing the
Communication Bandwidth for Distributed Training), Stitch et al. (Sparsified SGD with
Memory)

*  Early phase/Critical region in DNN training: Jonathan et al. (The Early Phase of Neural
Network Training), Alessandro et al. (Critical Learning Periods in Deep Neural Networks)

* Adaptive gradient compression: Aggarwal et al. (Accordion: Adaptive Gradient
Communication via Critical Learning Regime Identification)




Conclusion

J Compression gain helps measure the relative information loss due to compression

. Compression throughput works as an effective heuristic to balance the parallel gains of lossy compression
and statistical inefficiency of losing gradient information

0 GraVAC converges 1.95 - 6.7x faster than a static CF, while achieving the same convergence as dense-SGD

. Future directions:
. GraVAC on large language models
. Adaptive compression in model-parallelism

. Upstream-downstream adaptive compression with Parameter servers in Federated Learning




Thank you!

GraVAC: Adaptive Compression for Communication-Efficient
Distributed DL Training
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