

GraVAC: Adaptive Compression for Communication-Efficient Distributed DL Training

Sahil Tyagi and Martin Swany

INDIANA UNIVERSITY BLOOMINGTON

IEEE CLOUD 2023

Need for Distributed Training

- Size of deep learning (DL) models has grown exponentially in the last 5 years:
 - 2018: GPT-1 (100M+), BERT (340M+)
 - 2019: Transformer-XL (275M+), GPT-2 (1B+)
 - 2020: BART (140M+), Turing-NLG (17B+)
 - 2021: ViT (630M+), DALL-E (12B+)
 - 2022/2023: Stable Diffusion (890M+), GPT-3.5 (1.3B+, 6B+ and 175B+)

# parameters	Model-size		
10 ⁶	4 MB		
107	40 MB		
10 ⁸	400 MB		
10 ⁹	4 GB		

Distributed Data-Parallel (DDP) Training

DDP training challenges

• Each training-step time attributed to IO overhead, loss and gradient computation and gradient synchronization

$$t_{step} \approx t_{compute} + t_{sync} + t_{IO}$$

main bottleneck!

 The parallelizability of a job can be measured from its scaling efficiency

$$\eta_{scaling} = \frac{T_N}{N \cdot T_1}$$

Gradient compression for DDP training

- Gradient compression alleviates communication bottleneck and speeds up training
- What should be the ideal compression compression factor (CF) with lossy compression?
 - Reduces tensor volume to communicate.
 - Should not trim too much gradients
 - Has acceptable compression overhead

Statistical aspect

Parallel aspect

Parallel aspect of Gradient Compression

 To improve scaling efficiency, lossy methods reduce communication but introduce additional compression overhead

Statistical aspect of Gradient Compression

- Does information loss in compression correlate to model convergence?
- Can be seen from prior and post-compression gradients (BC and AC)

GraVAC's approach

How to choose a CF that considers both the parallel and statistical aspect of gradient compression in DDP training?

 $T_{compression} = T_{system} \times Compression gain$

It would be optimal to use low compression in early training phase and higher compression as the model converges and gradients become smaller!

GraVAC = Gradient Variance-based Adaptive Compression

GraVAC's Adaptive Compression

Parameters: CF exploration space $[cf_{min}, cf_{max}]$, window-size w, compression step-size c_s , gain threshold ϵ , gain/compression throughput saturation threshold ω

- IF $\delta_c < \epsilon$ AND $\delta_{min} \ge \epsilon$ THEN: aggregate compressed gradients $g_{min}^{(i)}$
- IF $\delta_c < \epsilon$ AND $\delta_{min} < \epsilon$ THEN: aggregate original gradients $g_o^{(i)}$

GraVAC's Adaptive Compression

 Based on the exploration space and compression step-size, all candidate CFs are evaluated

$$\text{IF } \omega \geq |\frac{\delta_{\min} - \delta_c}{\delta_{\min}}| \quad \text{THEN: scale up minimum CF as } cf_{\min} = cf_{\min} \cdot c_s$$

- Once all candidate CFs are evaluated, choose one where $T_{compression}$ saturates
- Compression <code>scales-up</code> by increasing cf_{min} based on c_s and ω
- Compression scales-down according to threshold ϵ

Experimental Evaluation

- GraVAC implemented atop PyTorch 1.10.1 and torch.distributed module
- Evaluated on image and text datasets across 3 popular DL models: ResNet101, VGG16 and LSTM
- Deployed over 32 V100 GPUs on the Google Cloud Platform (*n1-standard-8* VMs)
- Compared with static compression techniques like Top-k, DGC, Redsync and Random-k

Multi-level compression scaling

- CFs evaluated in the range $[cf_{min},cf_{max}]$ in steps of c_{s}
- Compressing original gradients (i.e., $g_o^{(i)}$) twice can incurs additional compression overhead (i.e., to $g_{min}^{(i)}$ and $g_c^{(i)}$)

$$X_1 = C(c_1, X)$$

$$X_2 = C(c_2, X) | c_2 > c_1 \text{ and } |X_2| < |X_1| < |X|$$

• Multi-level compression reduces this overhead by avoiding computation on massive tensors twice!

$$X_1 = C(c_1, X)$$

 $X_2' = C(c_2', X_1) : c_2' = \frac{c_2}{c_1} \text{ and } |X_2| = |X_2'|$

Multi-level (MTL) compression speedup for 10-1000x

faster than direct compression!

Results

• Train models with CF space [10x, 1000x], w=500 steps, ω =1%, ϵ values 0.7 and 0.9 and c_s increased exponentially

- Compared to dense-SGD, GraVAC reduces communication volume by 19-163x and achieves the same final accuracy!
- VGG16 on GraVAC reduce communication volume by 13-80x; On LSTM by 279-289x

GraVAC vs. Static compression

- Compared with fixed CFs 10x and 1000x on Top-k, DGC, Redsync and Random-k
- Overall Speedup reported w.r.t. Top-k 10x.
- Accuracy/Perplexity drop reported w.r.t. Dense-SGD.

GraVAC and Accordion with Random-*k*

- Despite its low compression overhead, Random-k fails to converge in many cases
- We compare GraVAC with Accordion; both using Random-k compression under the hood

exploration space set to [1.5x, 1000x], w = 2000, ϵ = 0.7, c_s = 2

Accordion changes CF based on critical regions in training; GraVAC looks at how much information is lost via compression and makes trade-offs between system throughput and accurate gradient representation

GraVAC vs. Accordion

Model	Method	Floats sent	Comm. sav.	Time sav.
ResNet101	Accordion	4.17×10^{11}	$1 \times$	1×
	GraVAC	$9.38 imes10^9$	44.5 imes	1.94 imes
VGG16	Accordion	3.83×10^{11}	$1 \times$	1×
	GraVAC	$1.7 imes10^{10}$	22.4 imes	5.63 imes
LSTM	Accordion	4.2×10^{11}	$1 \times$	1×
	GraVAC	$4 imes 10^9$	104.2 imes	2 .06×

Related work

- **Gradient noise**: Johnson et al. (AdaScale), Luo et al. (KungFu), Aurick et al. (Pollux), Tyagi et al. (Scavenger)
- **Gradient compression**: Fang et al. (Accelerating Distributed Deep Learning Training with Gradient Compression), Lin et al. (Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training), Stitch et al. (Sparsified SGD with Memory)
- **Early phase/Critical region in DNN training**: Jonathan et al. (The Early Phase of Neural Network Training), Alessandro et al. (Critical Learning Periods in Deep Neural Networks)
- Adaptive gradient compression: Aggarwal et al. (Accordion: Adaptive Gradient Communication via Critical Learning Regime Identification)

Conclusion

- **Compression gain** helps measure the relative information loss due to compression
- **Compression throughput** works as an effective heuristic to balance the parallel gains of lossy compression and statistical inefficiency of losing gradient information
- GraVAC converges **1.95 6.7x** faster than a static CF, while achieving the same convergence as dense-SGD
- Future directions:
 - GraVAC on large language models
 - Adaptive compression in model-parallelism
 - Upstream-downstream adaptive compression with Parameter servers in Federated Learning

Thank you!

GraVAC: Adaptive Compression for Communication-Efficient Distributed DL Training

