
GraVAC: Adaptive Compression for
Communication-Efficient Distributed DL

Training

INDIANA UNIVERSITY BLOOMINGTON IEEE CLOUD 2023

Sahil Tyagi and Martin Swany

Need for Distributed Training

2

• Size of deep learning (DL) models has grown
exponentially in the last 5 years:

• 2018: GPT-1 (100M+), BERT (340M+)

• 2019: Transformer-XL (275M+), GPT-2 (1B+)

• 2020: BART (140M+), Turing-NLG (17B+)

• 2021: ViT (630M+), DALL-E (12B+)

• 2022/2023: Stable Diffusion (890M+), GPT-3.5
(1.3B+, 6B+ and 175B+)

Assuming
single-precision

floats

Distributed Data-Parallel (DDP) Training

3

Minibatch
b

Compute
gradients

Compute
gradients

Compute
gradients

Gradient
Aggregation

g1 g2 g3

Worker1

Averaged
gradients

Averaged
gradients

Averaged
gradients

Minibatch
b

Minibatch
b

Worker2 Worker3

wi+1 = wi − η
1
N

n=N

∑
n=1

1
|b | ∑

j∈b

∂
∂wi

ℒ(x(j,n), wi)

VGG16

DDP training challenges

4

• Each training-step time attributed to IO
overhead, loss and gradient computation
and gradient synchronization

tstep ≈ tcompute + tsync + tIO

main bottleneck!

• The parallelizability of a job can be measured
from its scaling efficiency

ηscaling =
TN

N ⋅ T1
2 4 8 12 16

Workers

0.1

0.3

0.5

0.7

¥ s
ca

li
n
g

Gradient compression for DDP training

5

• Gradient compression alleviates communication
bottleneck and speeds up training

• What should be the ideal compression
compression factor (CF) with lossy compression?

• Reduces tensor volume to communicate

• Should not trim too much gradients

• Has acceptable compression overhead

Parallel aspectStatistical aspect

Parallel aspect of Gradient Compression

6

• To improve scaling efficiency, lossy methods
reduce communication but introduce additional
compression overhead

t(cf)
step ≈ tcompute + tIO + t(cf)

sync + t(cf)
compress−decompress

10x 100x 500x 1000x 2000x
CF

1

2

3

4

5

T
hr

ou
gh

pu
t

ResNet101

VGG16

LSTM
depends on

compression
method and ‘cf’

depends on
CF ‘cf’ and

collective op

Statistical aspect of Gradient Compression

7

• Does information loss in compression correlate to model convergence?

g(i)
ef = g(i)

0 + 𝗋𝖾𝗌𝗂𝖽𝗎𝖺𝗅(i−1) and g(i)
cf = C[g(i)

ef] ⟹ 𝗋𝖾𝗌𝗂𝖽𝗎𝖺𝗅(i) = g(i)
ef − g(i)

cf

compressed
gradients

original
gradients

higher compression can degrade model convergence or require more training!

0 10000 20000 30000 40000
Iterations

20

40

60

80

T
es

t
ac

cu
ra

cy

10x CF

1000x CF

Dense SGD

0 500 1000 1500 2000
Iterations

0.1

0.4

0.7

1.0

C
om

pr
es

si
on

ga
in

10x CF

1000x CF

0 200 400 600 800 1000
Iterations

25

50

75

100

G
ra

di
en

t
va

ri
an

ce BC

AC 10x

0 200 400 600 800 1000
Iterations

1000

2000

3000

4000 BC

AC 1000x

error-feedback
critical for convergence

Is there an empirical indicator to measure this information loss? 𝖢𝗈𝗆𝗉𝗋𝖾𝗌𝗌𝗂𝗈𝗇 𝗀𝖺𝗂𝗇 =
𝔼[| |g(i)

cf | |2]

𝔼[| |g(i)
ef | |2]

Compressor op

ResNet101

• Can be seen from prior and post-compression gradients (BC and AC)

GraVAC’s approach

8

GraVAC

ML framework (Tensorflow, PyTorch etc.)

Communication backend (TCP, MPI, NCCL)

worker worker worker

ML model

GraVAC = Gradient Variance-based Adaptive Compression

How to choose a CF that considers both the parallel
and statistical aspect of gradient compression in DDP
training?

Tcompression = Tsystem × 𝖢𝗈𝗆𝗉𝗋𝖾𝗌𝗌𝗂𝗈𝗇 𝗀𝖺𝗂𝗇

It would be optimal to use low compression in early
training phase and higher compression as the model
converges and gradients become smaller!

GraVAC’s Adaptive Compression

9

g(i)
o = ∇f (x(i), wi)

g(i)
min = C(g(i)

o , cfmin)

δmin =
| |g(i)

min | |2

| |g(i)
o | |2

g(i)
c = C(g(i)

min, cs)

δc =
| |g(i)

c | |2

| |g(i)
o | |2

effectively compresses original
gradients to CF cfmin ⋅ cs

• IF THEN: aggregate compressed gradients δc ≥ ϵ g(i)
c

• IF THEN: aggregate compressed gradients δc < ϵ AND δmin ≥ ϵ g(i)
min

• IF THEN: aggregate original gradients δc < ϵ AND δmin < ϵ g(i)
o

corresponding residual gradients are updated;
 and are calculated for

each
Tsystem Tcompression

(cf, δ)

Parameters: CF exploration space , window-size , compression step-size ,
gain threshold , gain/compression throughput saturation threshold

[cfmin, cfmax] w cs
ϵ ω

GraVAC’s Adaptive Compression

10

IF THEN: scale up minimum CF as ω ≥ |
δmin − δc

δmin
| cfmin = cfmin ⋅ cs

• Based on the exploration space and compression step-size, all candidate CFs are
evaluated

• Once all candidate CFs are evaluated, choose one where saturatesTcompression

• Compression scales-up by increasing based on and cfmin cs ω

• Compression scales-down according to threshold ϵ

Experimental Evaluation

11

• GraVAC implemented atop PyTorch 1.10.1 and torch.distributed module

• Evaluated on image and text datasets across 3 popular DL models: ResNet101, VGG16
and LSTM

• Deployed over 32 V100 GPUs on the Google Cloud Platform (n1-standard-8 VMs)

• Compared with static compression techniques like Top-k, DGC, Redsync and
Random-k

Multi-level compression scaling

12

• CFs evaluated in the range in steps of [cfmin, cfmax] cs

• Compressing original gradients (i.e.,) twice can incurs
additional compression overhead (i.e., to and)

g(i)
o

g(i)
min g(i)

c

• Multi-level compression reduces this overhead by
avoiding computation on massive tensors twice!

X1 = C(c1, X)
X2 = C(c2, X) | c2 > c1 and |X2 | < |X1 | < |X |

X1 = C(c1, X)

X ′
2 = C(c′

2, X1) : c′
2 =

c2

c1
and |X2 | = |X ′

2 |

Multi-level (MTL) compression speedup for 10-1000x

MTL 1.1-1.83x
faster than direct

compression!

Results

13

• Train models with CF space [10x, 1000x], w=500 steps, =1%, values 0.7 and 0.9 and
 increased exponentially

ω ϵ
cs

7000 14000 21000 28000 35000 42000
Iterations

40

60

80

T
es

t
ac

cu
ra

cy

≤ = 0.9

≤ = 0.7

Dense SGD

101 102 103

CF

0.0

2.5

5.0

7.5

It
er

at
io

n
K

D
E

101 102 103

CF

800

1000

1200

1400

T
co

m
pr

es
si

on

ResNet101

• Compared to dense-SGD, GraVAC reduces communication volume by 19-163x and
achieves the same final accuracy!

• VGG16 on GraVAC reduce communication volume by 13-80x; On LSTM by 279-289x

GraVAC vs. Static compression

14

• Compared with fixed CFs 10x and 1000x on Top-k, DGC, Redsync and Random-k

• Overall Speedup reported w.r.t. Top-k 10x.

• Accuracy/Perplexity drop reported w.r.t. Dense-SGD.

GraVAC and Accordion with Random-k

15

• Despite its low compression overhead, Random-k fails
to converge in many cases

• We compare GraVAC with Accordion; both using
Random-k compression under the hood

5000 11000 17000 23000 29000 35000
Iterations

20

40

60

80

T
es

t
ac

cu
ra

cy

GraVAC

Accordion

ResNet101

101

CF

450

650

850

T
co

m
pr

es
si

on

1

3

5

7

It
er

at
io

n
K

D
E

Kernel density

Tcompression

exploration space set to [1.5x, 1000x], w = 2000, = 0.7, = 2ϵ cs

Accordion changes CF based on critical regions in
training; GraVAC looks at how much information is
lost via compression and makes trade-offs between

system throughput and accurate gradient
representation

GraVAC CF distribution and Tcompression

GraVAC vs. Accordion

16

Related work

17

• Gradient noise: Johnson et al. (AdaScale), Luo et al. (KungFu), Aurick et al. (Pollux), Tyagi et
al. (Scavenger)

• Gradient compression: Fang et al. (Accelerating Distributed Deep Learning Training with
Gradient Compression), Lin et al. (Deep Gradient Compression: Reducing the
Communication Bandwidth for Distributed Training), Stitch et al. (Sparsified SGD with
Memory)

• Early phase/Critical region in DNN training: Jonathan et al. (The Early Phase of Neural
Network Training), Alessandro et al. (Critical Learning Periods in Deep Neural Networks)

• Adaptive gradient compression: Aggarwal et al. (Accordion: Adaptive Gradient
Communication via Critical Learning Regime Identification)

Conclusion

18

• Compression gain helps measure the relative information loss due to compression

• Compression throughput works as an effective heuristic to balance the parallel gains of lossy compression
and statistical inefficiency of losing gradient information

• GraVAC converges 1.95 - 6.7x faster than a static CF, while achieving the same convergence as dense-SGD

• Future directions:

• GraVAC on large language models

• Adaptive compression in model-parallelism

• Upstream-downstream adaptive compression with Parameter servers in Federated Learning

Thank you!

19

GraVAC: Adaptive Compression for Communication-Efficient
Distributed DL Training

