
Introduction to Distributed Deep
Learning

INDIANA UNIVERSITY BLOOMINGTON

E-317/517 HIGH PERFORMANCE COMPUTING, Spring 2024

INDIANA UNIVERSITY BLOOMINGTON

Deep Learning
• Machine Learning is a branch of AI that leverages data and

algorithms for insights

• Classified into: supervised, unsupervised, semi-supervised,
reinforcement learning

• Deep Learning is a subset of ML based on deep or artificial
neural networks with representation learning

• DNN/ANNs are inspired by the human brain

INDIANA UNIVERSITY BLOOMINGTON

Exponential Growth in Model Size
• 2018: GPT-1 (100M parameters), BERT (340M)

• 2019: Transformer-XL (257M), GPT-2 (1B)

• 2020: BART (140M), DialogGPT (1.5B), Turing-NLG (17B)

• 2021: ViT (630M), GPT-Neo (20B), DALL-E (12B)

• 2022: Stable Diffusion (890M), Megatron-Turing-NLG (530B), PaLM (540B), GLaM (1.2T)

• 2023: GPT-3.5 (1.3B, 6B and 175B), Chat-GPT (175B), Bard (137B), LLaMa (7-65B), Gemini (?)

According to OpenAI, the compute requirements to train SOTA DNNs doubles every 3.4 months!

INDIANA UNIVERSITY BLOOMINGTON

The ‘Learning’ in Deep Learning
• Gradient descent is the workhorse of DL that enables iterative

learning

• Gradient descent is inherently sequential as it relies on the chain
rule of calculus:

• DNN training is an iterative and repetitive process with three key
phases: forward pass, backward pass and parameter update

• Model quality influenced by a number of training-specific variables
or hyperparameters; e.g., choice of activation function, step-size
or learning-rate, dropout, regularization, order of optimization, mini-
batch, number of iterations or epochs, etc.

∂
∂x

f(g(x)) =
∂f
∂g

⋅
∂g
∂x

wt+1 = wt − η∇f where ∇f = ∂ℒ/∂wt

Zpred = W1X1 + W2X2

ℒ = | |Ytruth − Ypred | |2

Ypred = σ(Zpred)

X1 W1

Z

Z = WX

X2 W2

Y = σ(Z)

Y

∂ℒ
∂Z

=
∂ℒ
∂Y

⋅
∂Y
∂Z

∂ℒ
∂W

=
∂ℒ
∂Z

⋅
∂Z
∂W

INDIANA UNIVERSITY BLOOMINGTON

Training Data for Gradient Descent
• The more the data, the better is the model quality

• Given the training data, Gradient descent can be computed over :

The entire training data (Full GD)

A random sample (Stochastic GD)

A batch of data (Mini-batch GD)

Each of these variants impacts the training throughput and statistical performance of a model

INDIANA UNIVERSITY BLOOMINGTON

Hardware/Software for Deep Learning
• Training DNNs is compute intensive and requires numerous FLOPs or multiply-accumulate (MACs)

operations on massive tensors at every iteration

• Ideas of MLP, CNNs and LSTMs existed long before the last decade!

• GPUs GTX580 first used to train AlexNet in 2012 with model-parallelism

• Led to development of ASICs with dedicated MMUs for MIMD execution

• Tensor processing unit (TPC) v1.0 was 15x faster and 30x more efficient than NVIDIA K80 at the time

• Various DL frameworks developed over the years: Caffe, Keras, DistBelief, MXNet, TensorFlow, CNTK,
Petuum, PyTorch

INDIANA UNIVERSITY BLOOMINGTON

Parallelizing Deep Learning
• Training data for SOTA models grows exponentially, and so do the DNNs themselves!

• Given a system, DL parallelization is done either to accelerate or accommodate training

• Broadly classified as:

Data Parallelism

Model Parallelism

Pipeline Parallelism

For this talk and assignment, we will mainly cover data-parallelism

INDIANA UNIVERSITY BLOOMINGTON

Data Parallelism
• Multiple processes collaboratively train a model such that each worker contains a local model replica

or copy and trains independently on a different subset of data

• The exact communication pattern may vary with different distributed data-parallel algorithms

• Can be broadly classified as:

Bulk-synchronous parallel or BSP training

Asynchronous parallel or ASP training

Semi-synchronous parallel or SSP training

INDIANA UNIVERSITY BLOOMINGTON

Bulk-Synchronous Parallel Training

DatasetMini-batch (b) Mini-batch (b)

Compute
updates

Compute
updates

Update model

g1 g2

Compute

Compute

Worker 1

Worker n

.

.

.

Sync

Sync

Compute

Compute

 (i)-th Iteration (i+1)-th Iteration

VGG16

• Has a synchronization barrier at the end of each iteration, so
communication bound especially in case of stragglers

• Maybe centralized or decentralized that affects overall training throughput

𝒪(
1

NI
)• Has a convergence-rate of as we perform more work per-iteration

ring any bells
w.r.t scaling?

• Multiple independent processes train independently on i.i.d. sampled data
and aggregate their updates collectively at the end of each iteration

wi+1 = wi − η
1
N

N

∑
n=1

1
|b | ∑

x(n,i)∈ℬn

∂
∂wi

ℒ(x(n,t), wt)

titeration = tcompute + tsync + tIO

INDIANA UNIVERSITY BLOOMINGTON

Asynchronous Parallel Training
• To mitigate high communication overhead at every iteration, each worker

trains an independent model state in a centralized system setting

wt+1 = wt − η
1

|b | ∑
x(n,t)∈ℬn

∂
∂wt

ℒ(x(n,t), wn,(t−τn,t)) ∀ n ∈ [1,2,3,...N]

titeration = tcompute + tpull−from−server + tIO

• Compared to BSP, lesser work done per-iteration; converges in 𝒪(
1

I
)

• May suffer from staleness in model updates; as heterogeneity rises in a
cluster, staleness gets worse and degrades model quality

w1 = w1 − ηg1

Central Server

Worker #1 Worker #2

pull weights
push weights

asynchronously

w2 = w2 − ηg2

w*

AlexNet

INDIANA UNIVERSITY BLOOMINGTON

Semi-Synchronous Parallel Training
• Middle ground between synchronous and asynchronous training

• In Stale-synchronous parallel, training processes are allowed to run asynchronously, but only up to a
certain staleness threshold

• In fact, stale-synchronous parallel generalizes to BSP or ASP training based on the set value of
staleness threshold

wn,t+1 = w0 − η
t−s

∑
i=1

N

∑
j=1

1
|b | ∑

x(j,i)∈ℬn

∂
∂wj,i

ℒ(x(j,i), wj,i) − η
t

∑
i=t−s

1
|b | ∑

x(n,i)∈ℬn

∂
∂wn,i

ℒ(x(n,i), wn,i) − η ∑
(j,i)∈𝒮n,t+1

1
|b | ∑

x(j,i)∈ℬn

∂
∂wj,i

ℒ(x(n,i), wj,i)

INDIANA UNIVERSITY BLOOMINGTON

Cluster Topology

• Can be centralized or decentralized

• Physical arrangement of nodes or topology determines degree of distribution & latency between workers

• Based on the communication pattern of a distributed algorithm and its cost, overall throughput may vary!

INDIANA UNIVERSITY BLOOMINGTON

Communication Cost Analysis

• Based on the communication cost model, where alpha is the latency and 1/beta is the
communication bandwidth

(α − β)

• Different collectives have different communication costs associated with them, based on cluster-size,
model-size, latency, bandwidth and the specific collective implementation

• For e.g., Ring-AllReduce in decentralized systems (ringARexample)

https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da

INDIANA UNIVERSITY BLOOMINGTON

Statistical Efficiency in DNN Training
• Training throughput or parallel-efficiency can be improved by reducing

computation, IO or communication overhead

• But distributed DNN training has a statistical efficiency aspect associated
as well

• Depends on architecture specific parameters, length of training, type of
optimization and scaling of DL training (lr, batch and cluster-size)

Small batch-size

Large batch-size

Small learning-rate

Large learning-rate

• A small learning-rate takes small steps towards minima, while a very high
value may overshoot and diverge the model

• Mini-batch size influences the quality of gradients; larger batches take
fewer steps to reach minima compared to smaller batches

INDIANA UNIVERSITY BLOOMINGTON

Training with PyTorch
• Training a CNN image classifier over CIFAR10 involves:

Loading and normalizing training data using torchvision module

Define a DNN

Define a loss and optimizer function

Train model over training data

Test model over test data

• Example: basicnn_train.py

INDIANA UNIVERSITY BLOOMINGTON

Distributed Training with PyTorch
• PyTorch optimizes performance with native support for asynchronous

execution from Python

• DataParallel (DP) and DistributedDataParallel (DDP) modules in PyTorch
are SIMD training paradigm that single/multiple machine multi-GPU settings

• FullyShardedDataParallel on single machine multi-GPU when model does
not fit on one

• RPC framework allows for other distributed training abstractions

• Collective Communication is supported via MPI, NCCL and Gloo;
compatible collectives (here and here)

• In multi-node settings you can specify the network interface to use for
communication

ML framework (Tensorflow, PyTorch etc.)

Communication backend (TCP, MPI, NCCL)

worker worker worker

ML model

https://pytorch.org/docs/stable/distributed.html
https://pytorch.org/docs/stable/distributed.html

Thank you!

