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Deep Learning
• Machine Learning is a branch of AI that leverages data and 

algorithms for insights 

• Classified into: supervised, unsupervised, semi-supervised, 
reinforcement learning

• Deep Learning is a subset of ML based on deep or artificial 
neural networks with representation learning 

• DNN/ANNs are inspired by the human brain
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Exponential Growth in Model Size
• 2018: GPT-1 (100M parameters), BERT (340M) 

• 2019: Transformer-XL (257M), GPT-2 (1B) 

• 2020: BART (140M), DialogGPT (1.5B), Turing-NLG (17B) 

• 2021: ViT (630M), GPT-Neo (20B), DALL-E (12B) 

• 2022: Stable Diffusion (890M), Megatron-Turing-NLG (530B), PaLM (540B), GLaM (1.2T) 

• 2023: GPT-3.5 (1.3B, 6B and 175B), Chat-GPT (175B), Bard (137B), LLaMa (7-65B), Gemini (?)

According to OpenAI, the compute requirements to train SOTA DNNs doubles every 3.4 months!
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The ‘Learning’ in Deep Learning
• Gradient descent is the workhorse of DL that enables iterative 

learning 

• Gradient descent is inherently sequential as it relies on the chain 
rule of calculus:   

• DNN training is an iterative and repetitive process with three key 
phases: forward pass, backward pass and parameter update 

• Model quality influenced by a number of training-specific variables 
or hyperparameters; e.g., choice of activation function, step-size 
or learning-rate, dropout, regularization, order of optimization, mini-
batch, number of iterations or epochs, etc. 
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Training Data for Gradient Descent
• The more the data, the better is the model quality  

• Given the training data, Gradient descent can be computed over : 

The entire training data (Full GD) 

A random sample (Stochastic GD) 

A batch of data (Mini-batch GD) 

Each of these variants impacts the training throughput and statistical performance of a model
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Hardware/Software for Deep Learning
• Training DNNs is compute intensive and requires numerous FLOPs or multiply-accumulate (MACs) 

operations on massive tensors at every iteration 

• Ideas of MLP, CNNs and LSTMs existed long before the last decade! 

• GPUs GTX580 first used to train AlexNet in 2012 with model-parallelism 

• Led to development of ASICs with dedicated MMUs for MIMD execution 

• Tensor processing unit (TPC) v1.0 was 15x faster and 30x more efficient than NVIDIA K80 at the time 

• Various DL frameworks developed over the years: Caffe, Keras, DistBelief, MXNet, TensorFlow, CNTK, 
Petuum, PyTorch
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Parallelizing Deep Learning
• Training data for SOTA models grows exponentially, and so do the DNNs themselves! 

• Given a system, DL parallelization is done either to accelerate or accommodate training 

• Broadly classified as: 

Data Parallelism 

Model Parallelism 

Pipeline Parallelism

For this talk and assignment, we will mainly cover data-parallelism
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Data Parallelism
• Multiple processes collaboratively train a model such that each worker contains a local model replica 

or copy and trains independently on a different subset of data 

• The exact communication pattern may vary with different distributed data-parallel algorithms 

• Can be broadly classified as: 

Bulk-synchronous parallel or BSP training 

Asynchronous parallel or ASP training 

Semi-synchronous parallel or SSP training
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Bulk-Synchronous Parallel Training

DatasetMini-batch (b) Mini-batch (b)

Compute 
updates

Compute 
updates

Update model

g1 g2

Compute

Compute

Worker 1

Worker n

. 

. 

.

Sync

Sync

Compute

Compute

 (i)-th Iteration (i+1)-th Iteration

VGG16

• Has a synchronization barrier at the end of each iteration, so 
communication bound especially in case of stragglers

• Maybe centralized or decentralized that affects overall training throughput

𝒪(
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NI
)• Has a convergence-rate of              as we perform more work per-iteration

ring any bells 
w.r.t scaling? 

• Multiple independent processes train independently on i.i.d. sampled data 
and aggregate their updates collectively at the end of each iteration
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Asynchronous Parallel Training
• To mitigate high communication overhead at every iteration, each worker 

trains an independent model state in a centralized system setting
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• May suffer from staleness in model updates; as heterogeneity rises in a 
cluster, staleness gets worse and degrades model quality
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Semi-Synchronous Parallel Training
• Middle ground between synchronous and asynchronous training 

• In Stale-synchronous parallel, training processes are allowed to run asynchronously, but only up to a 
certain staleness threshold 

• In fact, stale-synchronous parallel generalizes to BSP or ASP training based on the set value of 
staleness threshold
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Cluster Topology

• Can be centralized or decentralized 

• Physical arrangement of nodes or topology determines degree of distribution & latency between workers 

• Based on the communication pattern of a distributed algorithm and its cost, overall throughput may vary!
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Communication Cost Analysis

• Based on the              communication cost model, where alpha is the latency and 1/beta is the 
communication bandwidth

(α − β)

• Different collectives have different communication costs associated with them, based on cluster-size, 
model-size, latency, bandwidth and the specific collective implementation

• For e.g., Ring-AllReduce in decentralized systems (ringARexample)

https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da
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Statistical Efficiency in DNN Training
• Training throughput or parallel-efficiency can be improved by reducing 

computation, IO or communication overhead 

• But distributed DNN training has a statistical efficiency aspect associated 
as well 

• Depends on architecture specific parameters, length of training, type of 
optimization and scaling of DL training (lr, batch and cluster-size)

Small batch-size

Large batch-size

Small learning-rate

Large learning-rate

• A small learning-rate takes small steps towards minima, while a very high 
value may overshoot and diverge the model

• Mini-batch size influences the quality of gradients; larger batches take 
fewer steps to reach minima compared to smaller batches
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Training with PyTorch
• Training a CNN image classifier over CIFAR10 involves: 

Loading and normalizing training data using torchvision module 

Define a DNN 

Define a loss and optimizer function 

Train model over training data 

Test model over test data 

• Example: basicnn_train.py
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Distributed Training with PyTorch
• PyTorch optimizes performance with native support for asynchronous 

execution from Python 

• DataParallel (DP) and DistributedDataParallel (DDP) modules in PyTorch 
are SIMD training paradigm that single/multiple machine multi-GPU settings 

• FullyShardedDataParallel on single machine multi-GPU when model does 
not fit on one  

• RPC framework allows for other distributed training abstractions 

• Collective Communication is supported via MPI, NCCL and Gloo; 
compatible collectives (here and here) 

• In multi-node settings you can specify the network interface to use for 
communication

ML framework (Tensorflow, PyTorch etc.)

Communication backend (TCP, MPI, NCCL)

worker worker worker

ML model

https://pytorch.org/docs/stable/distributed.html
https://pytorch.org/docs/stable/distributed.html


Thank you!


