

Introduction to Distributed Deep Learning

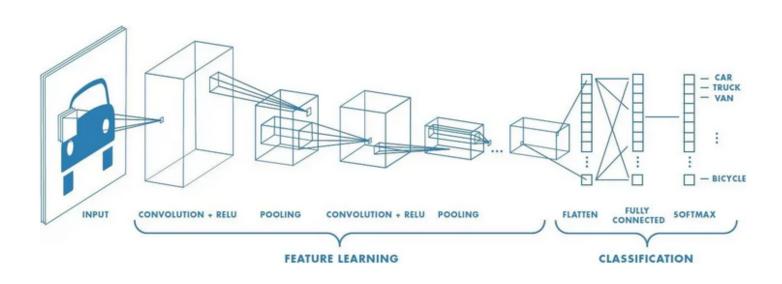
E-317/517 HIGH PERFORMANCE COMPUTING, Spring 2024

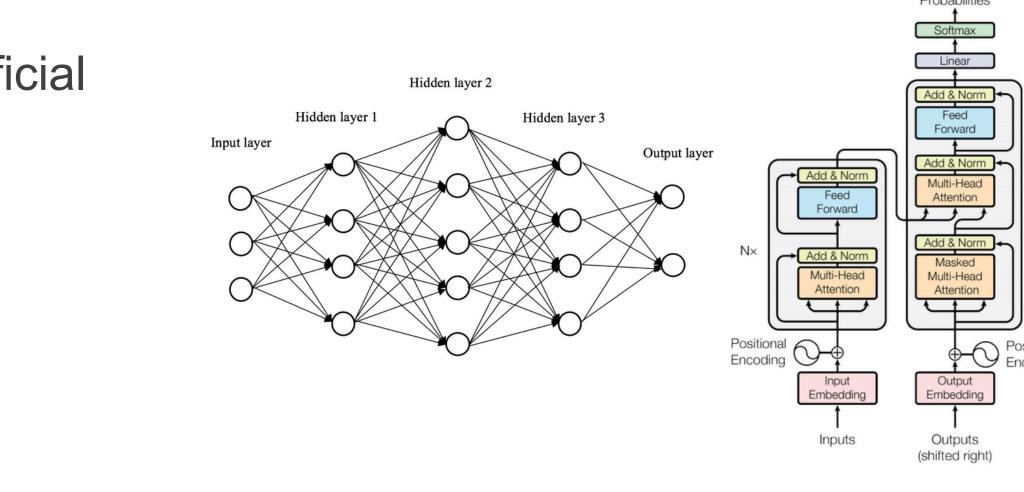
INDIANA UNIVERSITY BLOOMINGTON

Deep Learning

- Machine Learning is a branch of AI that leverages data and algorithms for insights
- Classified into: supervised, unsupervised, semi-supervised, reinforcement learning
- Deep Learning is a subset of ML based on deep or artificial neural networks with representation learning
- DNN/ANNs are inspired by the human brain

INDIANA UNIVERSITY BLOOMINGTON





Positiona Encoding

Exponential Growth in Model Size

- **2018**: GPT-1 (100M parameters), BERT (340M)
- **2019**: Transformer-XL (257M), GPT-2 (1B)
- **2020**: BART (140M), DialogGPT (1.5B), Turing-NLG (17B)
- **2021**: ViT (630M), GPT-Neo (20B), DALL-E (12B)
- 2022: Stable Diffusion (890M), Megatron-Turing-NLG (530B), PaLM (540B), GLaM (1.2T)
- **2023**: GPT-3.5 (1.3B, 6B and 175B), Chat-GPT (175B), Bard (137B), LLaMa (7-65B), Gemini (?)

INDIANA UNIVERSITY BLOOMINGTON

According to OpenAI, the compute requirements to train SOTA DNNs doubles every 3.4 months!

The 'Learning' in Deep Learning

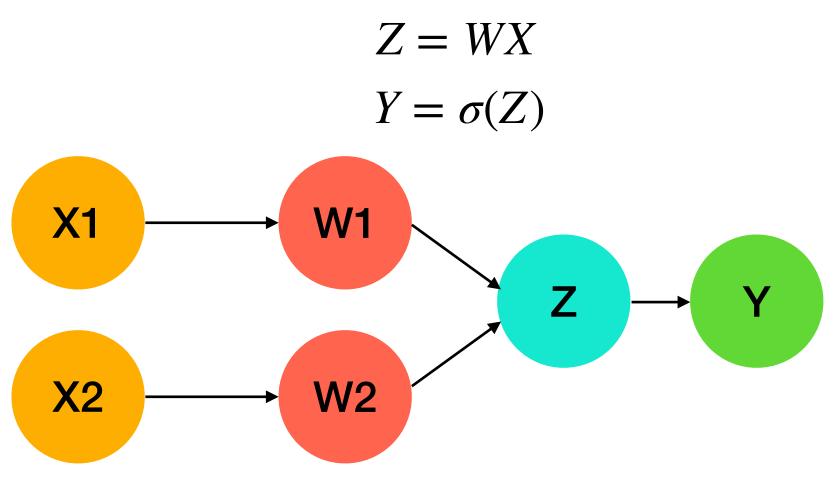
Gradient descent is the workhorse of DL that enables iterative learning

$$w_{t+1} = w_t - \eta \nabla f$$
 where $\nabla f = \partial \mathcal{D}$

- Gradient descent is inherently sequential as it relies on the chain rule of calculus: $\frac{\partial}{\partial x} f(g(x)) = \frac{\partial f}{\partial g} \cdot \frac{\partial g}{\partial x}$
- DNN training is an iterative and repetitive process with three key phases: forward pass, backward pass and parameter update
- Model quality influenced by a number of training-specific variables or *hyperparameters*; e.g., choice of activation function, step-size or learning-rate, dropout, regularization, order of optimization, minibatch, number of iterations or epochs, etc.

INDIANA UNIVERSITY BLOOMINGTON

 $\mathcal{E}/\partial W_t$



 $Z_{pred} = W_1 X_1 + W_2 X_2$ $Y_{pred} = \sigma(Z_{pred})$ $\mathscr{L} = ||Y_{truth} - Y_{pred}||^2$ $\partial \mathscr{L} \quad \partial Y$ $\partial \mathscr{L}$ $\partial Z = \partial Y = \partial Z$ $\partial \mathscr{L}$ $\partial \mathscr{L}$ ∂Z ∂W ∂Z ∂W

Training Data for Gradient Descent

- The more the data, the better is the model quality
- Given the training data, Gradient descent can be computed over :
 - The entire training data (*Full GD*)
 - A random sample (*Stochastic GD*)
 - A batch of data (*Mini-batch GD*)

Each of these variants impacts the training throughput and statistical performance of a model

INDIANA UNIVERSITY BLOOMINGTON

Hardware/Software for Deep Learning

- Training DNNs is compute intensive and requires operations on massive tensors at *every* iteration
- Ideas of MLP, CNNs and LSTMs existed long before the last decade!
- GPUs GTX580 first used to train AlexNet in 2012 with model-parallelism
- Led to development of ASICs with dedicated MMUs for MIMD execution
- Tensor processing unit (TPC) v1.0 was 15x faster and 30x more efficient than NVIDIA K80 at the time
- Various DL frameworks developed over the years: Caffe, Keras, DistBelief, MXNet, TensorFlow, CNTK, Petuum, PyTorch

Training DNNs is compute intensive and requires numerous FLOPs or multiply-accumulate (MACs)

Parallelizing Deep Learning

- Training data for SOTA models grows exponentially, and so do the DNNs themselves!
- Given a system, DL parallelization is done either to *accelerate* or *accommodate* training
- Broadly classified as:
 - Data Parallelism
 - Model Parallelism
 - **Pipeline Parallelism**

INDIANA UNIVERSITY BLOOMINGTON

For this talk and assignment, we will mainly cover data-parallelism

Data Parallelism

- or copy and trains independently on a different subset of data
- The exact communication pattern may vary with different distributed data-parallel algorithms
- Can be broadly classified as:
 - Bulk-synchronous parallel or BSP training
 - Asynchronous parallel or ASP training
 - Semi-synchronous parallel or SSP training

INDIANA UNIVERSITY BLOOMINGTON

Multiple processes collaboratively train a model such that each worker contains a local model replica

Bulk-Synchronous Parallel Training

Multiple independent processes train independently on i.i.d. sampled data and aggregate their updates collectively at the end of each iteration

$$w_{i+1} = w_i - \eta \frac{1}{N} \sum_{n=1}^N \frac{1}{|b|} \sum_{x_{(n,i)} \in \mathscr{B}_n} \frac{\partial}{\partial w_i} \mathscr{L}(w_i)$$

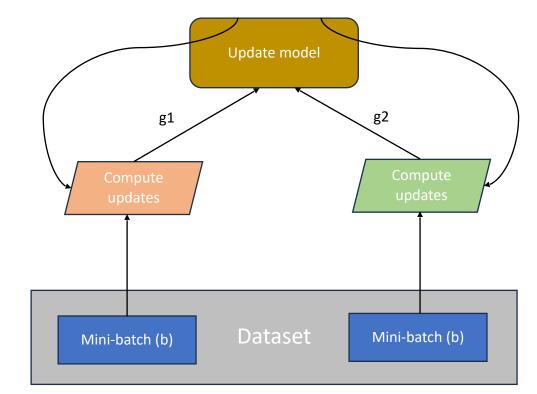
 $t_{iteration} = t_{compute} + t_{sync} + t_{IO}$

Has a convergence-rate of $\mathcal{O}(\frac{1}{\sqrt{NI}})$ as we perform more work per-iteration

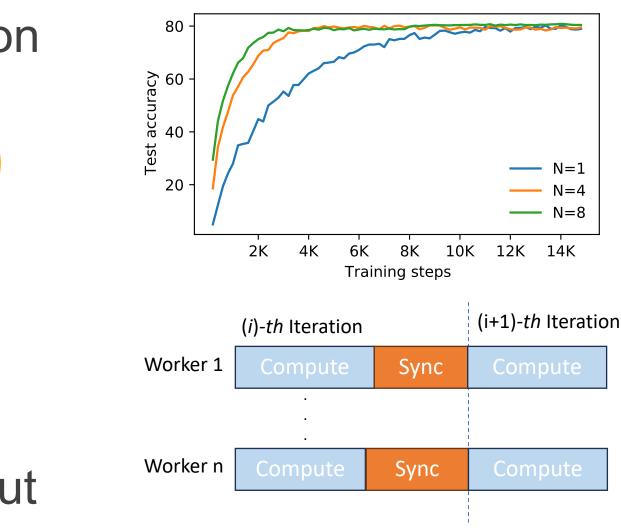
- Has a *synchronization barrier* at the end of each iteration, so communication bound especially in case of stragglers
- Maybe centralized or decentralized that affects overall training throughput

ΠΠ

 $(X_{(n,t)}, W_t)$



VGG16



ring any bells w.r.t scaling?

Asynchronous Parallel Training

To mitigate high communication overhead at every iteration, each worker trains an independent model state in a centralized system setting

$$w_{t+1} = w_t - \eta \frac{1}{|b|} \sum_{x_{(n,t)} \in \mathscr{B}_n} \frac{\partial}{\partial w_t} \mathscr{L}(x_{(n,t)}, w_{n,(t-\tau_{n,t})})$$

 $t_{iteration} = t_{compute} + t_{pull-from-serve}$

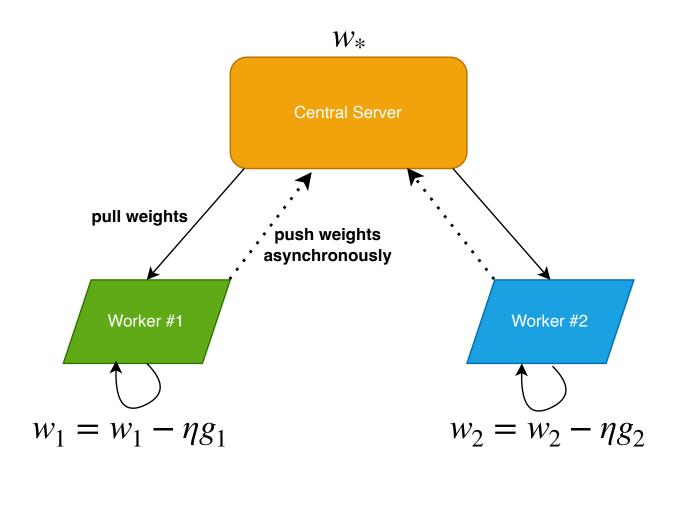
- Compared to BSP, lesser work done per-iteration
- May suffer from staleness in model updates; *as heterogeneity rises in a* cluster, staleness gets worse and degrades model quality

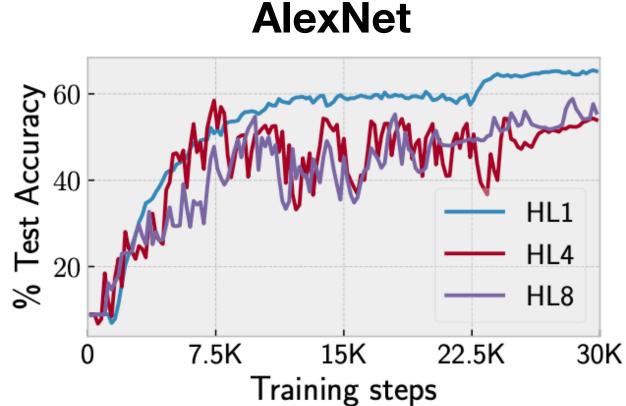
INDIANA UNIVERSITY BLOOMINGTON

$$\forall n \in [1,2,3,...N]$$

$$er + t_{IO}$$

n; converges in
$$\mathcal{O}(\frac{1}{\sqrt{I}})$$





Semi-Synchronous Parallel Training

- Middle ground between synchronous and asynchronous training
- certain staleness threshold

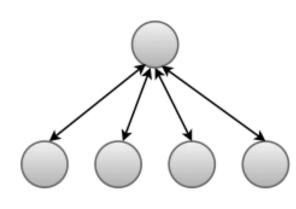
$$w_{n,t+1} = w_0 - \eta \sum_{i=1}^{t-s} \sum_{j=1}^N \frac{1}{|b|} \sum_{x_{(j,i)} \in \mathscr{B}_n} \frac{\partial}{\partial w_{j,i}} \mathscr{L}(x_{(j,i)}, w_{j,i}) - \eta \sum_{i=t-s}^t \frac{1}{|b|} \sum_{x_{(n,i)} \in \mathscr{B}_n} \frac{\partial}{\partial w_{n,i}} \mathscr{L}(\mathbf{x}_{(n,i)}, w_{n,i}) - \eta \sum_{(j,i) \in \mathscr{S}_{n,t+1}} \frac{1}{|b|} \sum_{x_{(j,i)} \in \mathscr{B}_n} \frac{\partial}{\partial w_{j,i}} \mathscr{L}(x_{(n,i)}, w_{j,i}) - \eta \sum_{i=t-s}^{t-s} \frac{\partial}{\partial w_{n,i}} \mathscr{L}(\mathbf{x}_{(n,i)}, w_{n,i}) - \eta \sum_{(j,i) \in \mathscr{S}_{n,t+1}} \frac{\partial}{\partial w_{j,i}} \mathscr{L}(\mathbf{x}_{(n,i)}, w_{j,i}) - \eta \sum_{i=t-s}^{t-s} \frac{\partial}{\partial w_{n,i}} \mathscr{L}(\mathbf{x}_{(n,i)}, w_{n,i}) - \eta \sum_{(j,i) \in \mathscr{S}_{n,t+1}} \frac{\partial}{\partial w_{j,i}} \mathscr{L}(\mathbf{x}_{(n,i)}, w_{j,i}) - \eta \sum_{i=t-s}^{t-s} \frac{\partial}{\partial w_{i,i}} \mathscr{L}(\mathbf{x}_{(n,i)}, w_{n,i}) - \eta \sum_{i=t-s}^{t-s} \frac{\partial}{\partial w_{i,i}} \mathscr{L}(\mathbf{x}_{(n,i)}, w_{n,i}) - \eta \sum_{(j,i) \in \mathscr{S}_{n,t+1}} \frac{\partial}{\partial w_{i,i}} \mathscr{L}(\mathbf{x}_{(n,i)}, w_{i,i}) - \eta \sum_{i=t-s}^{t-s} \frac{\partial}{\partial w_{i,i}} - \eta \sum_{i=t-s}^{$$

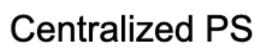
In fact, stale-synchronous parallel generalizes to BSP or ASP training based on the set value of staleness threshold

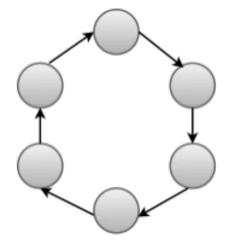
INDIANA UNIVERSITY BLOOMINGTON

In Stale-synchronous parallel, training processes are allowed to run asynchronously, but only up to a

Cluster Topology



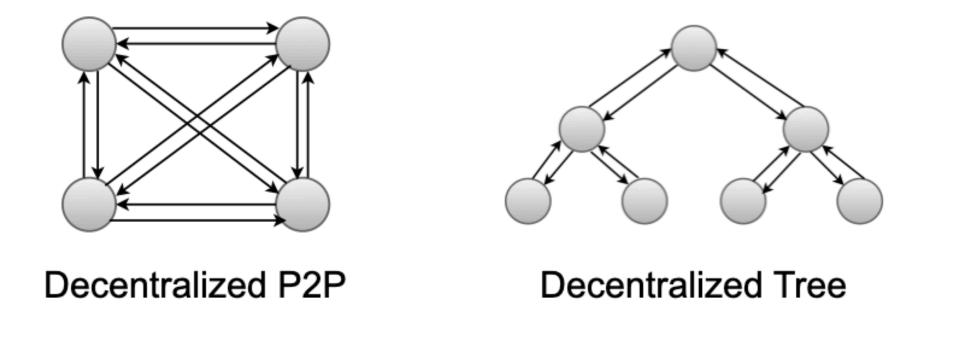




Decentralized Ring

- Can be centralized or decentralized

īΓ



Physical arrangement of nodes or *topology* determines degree of distribution & latency between workers

Based on the communication pattern of a distributed algorithm and its cost, overall throughput may vary!

Communication Cost Analysis

- model-size, latency, bandwidth and the specific collective implementation
- For e.g., Ring-AllReduce in decentralized systems (<u>ringARexample</u>)
- communication **bandwidth**

Operation	Latency Complexity	BW Complexity	Communication cost
PS	$\mathcal{O}(1)$	$\mathcal{O}(MN)$	$2\alpha + 2(N-1)M\beta$
Ring-Allreduce	$\mathcal{O}(N)$	$\mathcal{O}(M)$	$\left 2(N-1)\alpha + 2\frac{(N-1)}{N}M\beta \right $
Tree-Allreduce	$\mathcal{O}(\log(N))$	$\mathcal{O}(M\log(N))$	$2\alpha \log(N) + 2\log(N)M\beta$
Broadcast	$\mathcal{O}(\log(N))$	$\mathcal{O}(M\log(N))$	$\alpha \log(N) + \log(N)M\beta$
Allgather	$\mathcal{O}(\log(N))$	$\mathcal{O}(MN)$	$\alpha \log(N) + (N-1)M\beta$

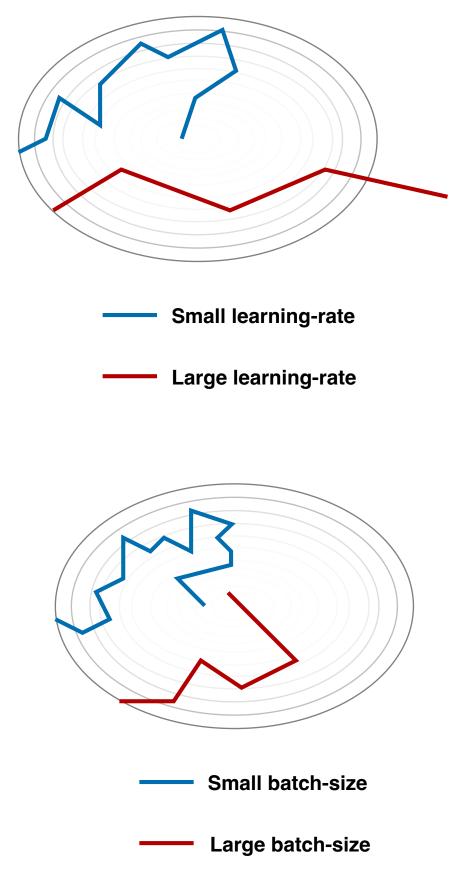
INDIANA UNIVERSITY BLOOMINGTON

Different collectives have different communication costs associated with them, based on cluster-size,

Based on the $(\alpha - \beta)$ communication cost model, where alpha is the *latency* and 1/beta is the

Statistical Efficiency in DNN Training

- Training throughput or *parallel-efficiency* can be improved by reducing computation, IO or communication overhead
- But distributed DNN training has a statistical efficiency aspect associated as well
- Depends on architecture specific parameters, length of training, type of optimization and scaling of DL training (Ir, batch and cluster-size)
- A small learning-rate takes small steps towards minima, while a very high value may overshoot and diverge the model
- Mini-batch size influences the quality of gradients; larger batches take fewer steps to reach minima compared to smaller batches



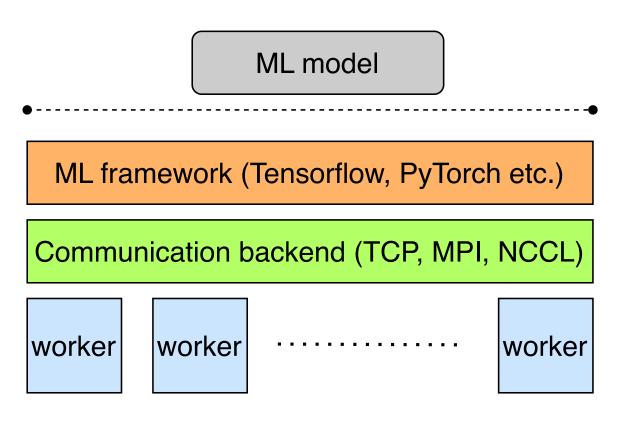
Training with PyTorch

- Training a CNN image classifier over CIFAR10 involves:
 - Loading and normalizing training data using *torchvision* module
 - Define a DNN
 - Define a loss and optimizer function
 - Train model over training data
 - Test model over test data
- Example: *basicnn_train.py*

īΓ

Distributed Training with PyTorch

- PyTorch optimizes performance with native support for asynchronous execution from Python
- DataParallel (DP) and DistributedDataParallel (DDP) modules in PyTorch are SIMD training paradigm that single/multiple machine multi-GPU settings
- *FullyShardedDataParallel* on single machine multi-GPU when model does not fit on one
- **RPC** framework allows for other distributed training abstractions
- Collective Communication is supported via **MPI**, **NCCL** and **Gloo**; compatible collectives (<u>here</u> and <u>here</u>)
- In multi-node settings you can specify the network interface to use for communication



Thank you!