P

Introduction to Distributed Deep
Learning

E-317/517 HIGH PERFORMANCE COMPUTING, Spring 2024

INDIANA UNIVERSITY BLOOMINGTON

| Deep Learning

* Machine Learning is a branch of Al that leverages data and
algorithms for insights

 C(Classified into: supervised, unsupervised, semi-supervised, g pl e,
reinforcement learnng e T
* Deep Learning is a subset of ML based on deep or artificial =
neural networks with representation learnin e AR s
p g / . %&\\}Y/ . Ou layer e AddF&lNorm ™\ A,j:,:'::;:
NREEL. X0 Q’/ el { 2 f% -
. . - X % A X ‘v’{) Add & Norm
* DNN/ANNSs are inspired by the human brain i':é,%f:z{(‘};}éém. v |~ | | E
_ \\'//“‘. ‘,"\\', L ‘\Anention} I &nti‘; |
ot (- () Eosra
AN

w INDIANA UNIVERSITY BLOOMINGTON

| Exponential Growth in Model Size

e 2018: GPT-1 (100M parameters), BERT (340M)
e 2019: Transformer-XL (257M), GPT-2 (1B)

e 2020: BART (140M), DialogGPT (1.5B), Turing-NLG (17B)

e 2021: ViT (630M), GPT-Neo (20B), DALL-E (12B)

e 2022: Stable Diffusion (890M), Megatron-Turing-NLG (530B), PaLM (540B), GLaM (1.2T)

e 2023: GPT-3.5 (1.3B, 6B and 175B), Chat-GPT (1/5B), Bard (137/B), LLaMa (7-65B), Gemini (?)

According to OpenAl, the compute requirements to train SOTA DNNs doubles every 3.4 months!

w INDIANA UNIVERSITY BLOOMINGTON

| The ‘Learning’ in Deep Learning

e Gradient descentis the workhorse of DL that enables iterative
learning

w1 =w,—nVf where Vf=09Z/ow,

 (Gradient descent is inherently sequential as it relies on the chain
of Og
dg 0x

0
rule of calculus: a—f(g(x)) =
X

* DNN ftraining is an iterative and repetitive process with three key
phases: forward pass, backward pass and parameter update

* Model quality influenced by a number of training-specific variables
or hyperparameters; e.g., choice of activation function, step-size
or learning-rate, dropout, regularization, order of optimization, mini-
batch, number of iterations or epochs, etc.

w INDIANA UNIVERSITY BLOOMINGTON

X1

X2

Zpred — W1X1 + W2X2

Y pred — U(Zpred)

2
Z = HYtruth_ YpredH

0F 0L oY
oZ dY oZ
0F 0L 07
oW 9Z oW

| Training Data for Gradient Descent

* The more the data, the better is the model quality

* Given the training data, Gradient descent can be computed over :
o The entire training data (Full GD)
o A random sample (Stochastic GD)

o A batch of data (Mini-batch GD)

Each of these variants impacts the training throughput and statistical performance of a model

w INDIANA UNIVERSITY BLOOMINGTON

| Hardware/Software for Deep Learning

 Training DNNs is compute intensive and requires numerous FLOPs or multiply-accumulate (MACs)
operations on massive tensors at every iteration

 |deas of MLP, CNNs and LSTMs existed long before the last decade!
e GPUs GTX58O0 first used to train AlexNet in 2012 with model-parallelism
* [ed to development of ASICs with dedicated MMUs for MIMD execution

 Tensor processing unit (TPC) v1.0 was 15x faster and 30x more efficient than NVIDIA K80 at the time

 Various DL frameworks developed over the years: Caffe, Keras, DistBelief, MXNet, TensorFlow, CNTK,
Petuum, Py Torch

w INDIANA UNIVERSITY BLOOMINGTON

| Parallelizing Deep Learning

* Training data for SOTA models grows exponentially, and so do the DNNs themselves!
 Given a system, DL parallelization is done either to accelerate or accommodate training
 Broadly classified as:

o Data Parallelism

© Model Parallelism

o Pipeline Parallelism

For this talk and assignment, we will mainly cover data-parallelism

w INDIANA UNIVERSITY BLOOMINGTON

| Data Parallelism

* Multiple processes collaboratively train a model such that each worker contains a local model replica
or copy and trains independently on a different subset of data

* The exact communication pattern may vary with different distributed data-parallel algorithms
 (Can be broadly classified as:

o Bulk-synchronous parallel or BSP training

o Asynchronous parallel or ASP training

o Semi-synchronous parallel or SSP training

w INDIANA UNIVERSITY BLOOMINGTON

| Bulk-Synchronous Parallel Training

 Multiple independent processes train independently on i.i.d. sampled data
and aggregate their updates collectively at the end of each iteration

1 <& 1 .
W1 =W, — — — —L(x,, N, W
i+1 l 77N ; |b| 2 0Wl- ((n,1) t)

x(n’l-)eggn

Mini-batch (b)

titeration — tcompute + tsync + tIO
1 VGG16
e Has a convergence-rate of 6(——) as we perform more work per-iteration —
/NI
ring any bells é o
w.r.t scaling? " 20- T s
* Has a synchronization barrier at the end of each iteration, so -th teration (1) th teration
communication bound especially in case of stragglers Worker 1
. . . . Worker n
* Maybe centralized or decentralized that affects overall training throughput 5

w INDIANA UNIVERSITY BLOOMINGTON

| Asynchronous Parallel Training

W

 To mitigate high communication overhead at every iteration, each worker
trains an independent model state in a centralized system setting

1 ¥
pull weights ’
. push weights
." asynchronously

1 0
Wt =W, —f— Y — L Wais) ¥V 1 E[1.2.3,.N]
1D | ow, ’

x(n,t)eggn

.

iteration

— tcompute T tpull—fmm—server T Lo Wy =W — 18 Wy =Wy = 1182

e Compared to BSP, lesser work done per-iteration; converges in @(%) AlexNet
I

(@)
-
1

N
()

* May suffer from staleness in model updates; as heterogeneity rises in a
cluster, staleness gets worse and degrades model quality

— HL1
— HL4
— HLS

% Test Accuracy

DO
-
I

0 7.5K 15K 225K 30K
Training steps

w INDIANA UNIVERSITY BLOOMINGTON

] Semi-Synchronous Parallel Training

 Middle ground between synchronous and asynchronous training

* |n Stale-synchronous parallel, training processes are allowed to run asynchronously, but only up to a
certain staleness threshold

0

0Wj’ i

I—s N t
1 0 1 0 1
Wiie1 = Wo = 1] Z Z Tor Z o 2 (X Wii) =1 Z I Z ™ "L Kuiyy W) =11 Z I 2L (X Wji)

i=1 j=1 X ;)EB, i=t—s X EB, (DES uip1 X ;)ERB,

* |n fact, stale-synchronous parallel generalizes to BSP or ASP training based on the set value of
staleness threshold

w INDIANA UNIVERSITY BLOOMINGTON

] Cluster Topology

N
O%%@ @ 0 he

Centralized PS Decentralized Ring Decentralized P2P Decentralized Tree

 (Can be centralized or decentralized
 Physical arrangement of nodes or topology determines degree of distribution & latency between workers

e Based on the communication pattern of a distributed algorithm and its cost, overall throughput may vary!

w INDIANA UNIVERSITY BLOOMINGTON

]| Communication Cost Analysis

e Different collectives have different communication costs associated with them, based on cluster-size,
model-size, latency, bandwidth and the specific collective implementation

* Fore.g., Ring-AllReduce in decentralized systems (ringARexample)

e Based on the (@ — /) communication cost model, where alpha is the latency and 1/beta is the
communication bandwidth

Operation Latency Complexity | BW Complexity Communication cost
PS O(1) O(MN) 2a + 2(N — 1)Mp
Ring-Allreduce O(N) O(M) 2(N — 1)a+ 28 Mp
Tree-Allreduce O(log(N)) O(Mlog(N)) | 2alog(N)+ 2log(N)Mp
Broadcast O(log(N)) O(M log(N)) alog(N) + log(N)Mp
Allgather O(log(N)) O(MN) alog(N)+ (N —-1)Mp

w INDIANA UNIVERSITY BLOOMINGTON

https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da

| Statistical Efficiency in DNN Training

* Training throughput or parallel-efficiency can be improved by reducing
computation, IO or communication overhead

 But distributed DNN training has a statistical efficiency aspect associated
as well

- Small learning-rate

Large learning-rate

 Depends on architecture specific parameters, length of training, type of
optimization and scaling of DL training (Ir, batch and cluster-size)

* A small learning-rate takes small steps towards minima, while a very high
value may overshoot and diverge the model

 Mini-batch size influences the quality of gradients; larger batches take
fewer steps to reach minima compared to smaller batches

- Small batch-size

Large batch-size

w INDIANA UNIVERSITY BLOOMINGTON

| Training with PyTorch

 Training a CNN image classifier over CIFAR10 involves:
o Loading and normalizing training data using torchvision module
o Define a DNN
o Define a loss and optimizer function
o Train model over training data
o Test model over test data

e Example: basicnn_frain.py

w INDIANA UNIVERSITY BLOOMINGTON

| Distributed Training with PyTorch

 PyTorch optimizes performance with native support for asynchronous
execution from Python

 DataParallel (DP) and DistributedDataParallel (DDP) modules in PyTorch [ML model]
are SIMD training paradigm that single/multiple machine multi-GPU settings € .

ML framework (Tensorflow, PyTorch etc.)

* FullyShardedDataParallel on single machine multi-GPU when model does Communication backend (TCP, MPI, NCCL)
not fit on one

worker| |worker| s worker

e RPC framework allows for other distributed training abstractions

e (Collective Communication is supported via MPI, NCCL and Gloo;
compatible collectives (here and here)

* |n multi-node settings you can specify the network interface to use for
communication

w INDIANA UNIVERSITY BLOOMINGTON

https://pytorch.org/docs/stable/distributed.html
https://pytorch.org/docs/stable/distributed.html

Thank you!

