
Anomaly Detection over Streaming Data:
Indy500 case study

Chathura Widanage1 Jiayu Li1 Sahil Tyagi1 Ravi Teja1 Bo Peng2

Supun Kamburugamuve2 Jon Koskey3 Dan Baum4 Dayle M. Smith4 Judy Qiu2

Department of Intelligent Systems Engineering
Indiana University

1{cdwidana, jl145, styagi, rbingi}@iu.edu
2{pengb, skamburu, xqiu}@indiana.edu

3{jkoskey}@indycar.com
4{dan.baum, dayle.m.smith}@intel.com

Abstract—Sports racing is attracting billions of audiences each
year. It is powered and transformed by the latest data analysis
technologies, from race car design, driving skill improvements to
audience engagement on social media. However, most of the data
processing are off-line and retrospective analysis. The emerging
real-time data analysis from the Internet of Things (IoT) result in
fast data streams generated from distributed sensors. Applying
advanced Machine Learning/Artificial Intelligence over such data
streams to discover new information, predict future insights and
make control decision is a crucial process. In this paper, we
start by articulating racing car big data characteristics and
present time-critical anomaly detection of the racing cars with
the real-time sensors of cars and the tracks from actual racing
events. We build a scalable system infrastructure based on
neuro-morphic Hierarchical Temporal Memory Algorithm(HTM)
algorithm and Storm stream processing engine. By courtesy of
historical Indy500 racing logs, evaluation experiments on this
prototype system demonstrate good performance in terms of
anomaly detection accuracy and service level objective (SLO)
of latency for a real-world streaming application.

Index Terms—big data, stream processing, anomaly detection,
neuro-morphic computing, edge computing

I. INTRODUCTION

The IndyCar Series [4], currently known as the NTT
IndyCar Series under sponsorship, is the premier level of
open-wheel racing in North America. Featuring racing at a
combination of superspeedways, short ovals, road courses
and temporary street circuits, the IndyCar Series offers its
international lineup of drivers the most diverse challenges
in motorsports. Indy500 is its premier event at Indianapolis
Motor Speedway where the racing cars reach speeds up to
235 mph.

INDYCAR [5], the sanctioning body for the IndyCar Series,
utilizes a Timing & Scoring application that monitors lap
times of cars to the ten-thousandth of a second, the closest
in motorsports. With the advent of smaller but powerful
computational devices, the cars and race tracks come fitted
with hundreds of sensors and actuators. The sensors in the cars
record and transmit various metrics (speed, engine rpm, gear,
steering direction, brake et al.) to the main server present on
premises of the Indy 500 race track. These advanced informa-

tion technology infrastructures support the racing management
and the communication between the drivers and their teams.
Each race generates a large volume of the telemetry and timing
& scoring data, for example in the race of May 27, 2018,
it contains 4,871,355 records with consecutive data arrival
interval of 6 to 8 records per second for each car on average.

To build a system to support real-time data analysis, such
as anomalies detection on the Indycar timing & scoring data
is a challenging task. First, we must have a learning algorithm
capable of capturing the drifting of data patterns in real-time.
Most neural network models can achieve reasonable accuracy,
but require large sets of training data to make predictions and
detect anomalies. Static pre-trained models are not capable
of making correct decisions or inference on the continuously
evolving data streams which have their patterns changing
over time. The desirable algorithm should keep learning and
detecting from the streaming data in an online fashion, i.e.,
without looking at data forward. Second, we must adhere to the
time constraints of a real-time application with a reasonable
execution latency. As the learning algorithm keeps learning
from the data stream which is resource intensive, dealing with
multiple metrics across all cars in the Indy 500 requires a
scalable distributed system.

One such avenue lies at the intersection of real-time stream
processing and machine learning. We aim to address this
problem here, developing an application tailored to the data
and requirements of the Indy500 race. We leverage an on-
line learning algorithm called Hierarchical Temporal Memory
(HTM) [15], developed by Numenta and deploy it on Apache
Storm [1]. Our main contributions are summarized as follows:

• Propose a scalable system design that supports real-time
stream processing.

• Implement a prototype system that achieves good perfor-
mance in terms of detection accuracy and service of the
objective of latency.

• Performance analysis on HTM Java package and its
deployment in storm cluster.

• Annotate Indy500 dataset on anomalies with known
events and evaluate the performance of anomaly detection

system.

II. PROBLEM STATEMENT

A. Anomaly Detection of Telemetry in auto racing

Telemetry in auto racing has improved the domain very
much in the last decade [19] [22]. Broadcast sports such
as motor racing have brought opportunities for spectators
to monitor the performance of cars in real time. Mikhail
Grachev says data is the winning force in motor racing and
that telemetry data is very valuable to them. This allows the
racing car team to analyze the existing data and identify the
next move. Specifically, telemetry data allows the team to
be synchronized with the car [16]. Not only can the sensor
readings be used in basic electromechanical operations, but the
data transmitted over the network can also be used to perform
data mining to identify anomalies in the system, component
malfunctions or statistics generation.

To better understand the requirements for Anomaly Detec-
tion over IndyCar streaming data, we need to explore the
properties of the sensors data and how they are different from
those of general big data. IndyCar data exhibits the following
characteristics:

• Large-Scale Streaming Data: over 150 sensors per car of
33 cars are generating streams of data continuously.

• Heterogeneity: Various sensors data from different cars,
the tracks, GPS, 36 video cameras and racing information
such as weather and wind resulting in data heterogeneity.

• Time and space correlation: sensor devices are logging
to a specific time-stamp for each of the data items.

• Noise data: Indy500 dataset may be subject to errors and
noise during acquisition and transmission.

B. Hierarchical Temporal Memory Algorithm (HTM)

Hierarchical Temporal Memory(HTM) is capable of detect-
ing anomalies from data streams in real-time and performs
well on the concept drift problems. Related works of anomaly
detection using HTM [9], [20], [26], [27] demonstrate that
HTM excels many other state-of-the-art anomaly detection
algorithms. Numenta Anomaly Benchmark (NAB) [20] at-
tempts to provide a controlled and repeatable environment
of open-source tools to test and measure anomaly detection
algorithms on streaming data. We adopt HTM as the core
anomaly detection algorithm in our system.

The basic idea of HTM is that it imitates the process
of sequential learning in the neocortex of the brain, which
is involved in higher cognitive functions such as reasoning,
conscious thoughts, language, and motor commands [7]–[9],
[17]. HTM sequence memory models one layer of the cortex
which is organized into a set of columns of cells, or neurons, as
shown in Fig. 1. Each neuron models the dendritic structure of
neuron in the cortex. Sufficient activity from lateral dendrite
will cause a neuron to enter an active state. An inhibition
mechanism provides a sparse data representation in HTM,
in which a cell activated by lateral connections prevents
other cells in the same column to enter active state. Sparse
representations enables HTM to model high-order sequences

Fig. 1: Working of HTM sequence memory [9].

(sequences with long-term dependencies), as in Fig. 1c, the
same input ”C” in two sequences invokes different prediction
of either D or Y depending on the context several steps ago.

The connections between the neurons are learned from
input data continuously. The input, xt, is fed to an encoder
and create a sparse binary vector representation a(xt). Then,
all neurons update their status by the inputs from connected
neurons with active cells. It outputs predictions in the form of
another sparse vector π(xt). The prediction error, St, a scalar
value inversely proportional to the number of bits common
between the actual and predicted binary vectors is given by

St = 1− π(xt−1) · α(xt)

|α(xt)|
(1)

where |α(xt)| is the scalar norm, i.e. the total number
of 1 bits in a(xt). Furthermore, anomaly likelihood can be
calculated from the prediction error by assuming it follows a
normal distribution which is estimated in a previous window.
As the likelihoods are very small numbers, a log transform
is used to output the final anomaly score. For example, a
likelihood of 0.00001 means we see this much predictability
about one out of every 10,000 records, and the final anomaly
score is 0.5.

C. Streaming Infrastructures

Successful big data processing systems, such as Hadoop
and Spark were not built to process and take actions on
continuous data streams flowing in at fluctuating rates. Such
requirements and constraints for real-time processing led to the
development of Distributed Stream Processing Systems [14]
[18] like Apache Storm [25], Flink [11], Spark Streaming [28].
Spark Streaming is an extension to Spark as it uses a standard
API to process incoming records as a set of mini-batches rather
than process one tuple (or record) at a time. On the other hand,
Storm and Flink follow a tuple-wise processing paradigm
where we define the topology as a DAG (Directed Acyclic
Graph) composed of parallel running tasks. Flink provides a
unified API for batch and stream processing with pipelined
data transfers. The message guarantee offered in Flink is

exactly-once, while Storm offers at-least-once, exactly-once,
and at-most-once guarantees.

As HTM is a sequential online learning algorithm, we will
apply different metrics (e.g. SPEED, RPM and THROTTLE)
in the same telemetry stream that can be processed by multiple
HTM networks in pleasingly parallel. Given the application
requirements and topology design, we decided to proceed with
Apache Storm as the stream processing engine.

III. SYSTEM ARCHITECTURE AND IMPLEMENTATION

A. System Architecture

While anomaly detection is the core module that we focus
on in this paper, the application needs a real-time response
with latency below 100 ms. It requires an end-to-end system as
the testbed of streaming infrastructure. Fig. 2 shows the system
architecture of five components. 1) We split IndyCar’s TCP
stream into two new streams at Event Publisher component
and one goes directly to the database and other one is fed to
the MQTT broker. 2) We use MQTT as the communication
protocol within our infrastructure due to its high quality of
service (QoS) [21] and lower bandwidth consumption. Apache
Apollo is used as the MQTT broker implementation due to
its simplicity and performance. 3) Data processing or heavy
lifting is done by a distributed HTM network which has been
deployed over an Apache storm topology. Storm consumes
topics from MQTT broker and feeds in real-time to the HTM
network. The output from the HTM is published back to the
message broker, which will be consumed by SocketServer and
finally broadcast to the clients. HTM network is powered by
a community managed Java implementation of the algorithm,
HTM.java [2]. 4) We utilize a MongoDB database to persist all
raw data and computed data in real-time for offline analysis.
5) We build a front end application to visualize the results of
the processed data stream in real-time. The primary objective
of this front end application is to make decision making
easier and support drivers, pit-crew, engineers, and entertain
remotely connected motor sports fans. We have made this
application responsive, so it can be viewed in any modern
web browser, including most of the mobile web browsers. Our
system prototype online demo can be accessed at [3].

B. HTM Deployment in Storm Cluster

The central research problem we address in the system
design is, How to deploy the HTM neural networks in a storm
streaming cluster in order to achieve specific SLO of latency
and scaling? HTM network provides good performance in
detecting anomalies, and it needs relatively more computation
resources when it keeps learning and inference. The processing
time for each incoming data record is not constant but depends
on the context of the stream and the current learned model.
In the Indy500 data streams, there are 33 cars and several
telemetry metrics for each car. For example, when we use
three metrics, SPEED (vehicle speed), RPM (engine speed)
and THROTTLE, there are 99 HTM networks that should be
deployed in the system with each network dealing with one

Fig. 2: System Architecture. IndyCar application processes the
timing&score data streams of the race, detects anomalies and
responses in real-time. Multiple types of clients are supported.

metric. A trade-off between resource allocation and SLO of
latency violation is the major factor in our system design.

First, the processing time of the HTM network should on
average less than the application SLO requirement. We do
extensive data analysis and performance evaluation on HTM
in section IV.

Second, HTM.java provides an asynchronous interface for
input and output. Internally, each network spawns a long-
running thread. Thus, a thread level synchronization is still
needed even when all the metrics of the same car are deployed
on the same worker. This would introduce overhead and
latency to the overall processing time.

Third, in order to reduce the unnecessary overhead of thread
level synchronization and improve CPU utilization, we opti-
mize the HTM.java library by changing the threading model.
By default, HTM.java spawns a thread per layer in HTM
network. Since anomaly detection is a one layer network,
HTM.java builds one network for each metric and spawns one
thread accordingly. In Fig. 3, three threads are spawned for
three metrics for each car, and one instance of MQTT client
is created per car (per storm task), where it internally spawns
four threads for, sending, receiving, pinging and for calling-

Fig. 3: HTM.java default threading model

back. With this default threading model, our setup spawns
8 threads per car including the Storm’s threads. Hence if we
schedule to process 33 cars within a single machine, it spawns
a total of 264 threads (33 storm executor threads, 4*33 MQTT
client threads, 3*33 HTM threads), which creates a significant
resource contention issues.

By analyzing the thread utilization of each car, we identified
that due to the arrival rate in the range of [80,90] ms, most of
the threads remain in the waiting state. This adversely affects
latency since, this behavior increases the amount of context
switching and at the same time in-order to process a single
event, three HTM threads need to be returned to the running
state from waiting state. Since we need to combine outputs
from all three HTM networks, before sending an event back to
the broker, this drastically increases the latency for processing
a single tuple.

As shown in Fig. 4, an improvement for this problem is to
customize the threading model of the HTM.java library and
handle multiple layers of multiple HTM networks by a group
of long-running threads, instead of scheduling one thread per
layer in 3. When a new HTM network is instantiated within
the same Java virtual machine(JVM), we add the layers of that
networks to a shared queue, which is visible globally across all
the instances of HTM networks within that JVM. We also keep
a globally visible counter which keeps the number of HTM
networks instantiated within the JVM. Based on this count,
we spawn threads on demand, to match one thread per three
networks (configurable) rule. Each of these threads iteratively
polls (takes the first in the queue) a layer from the queue and
compute or process that layer and adds that back to the queue.
If there is nothing to process in a particular layer, instead of
waiting for data, the thread moves on to the next available layer
in the queue. Along with the alterations of the HTM threading
model, we configured storm tasks within the same JVM to
share a single instance of MQTT client instead of creating
an instance per task. We even replaced the default TCP
connection factory of MQTT client with our implementation
to configure clients with TCP NODELAY, in order to improve
the latency of messages. These modifications reduced the
threads per JVM significantly, and for 33 cars scheduled in
the same machine, the total thread count was reduced down
to 48 (4 MQTT client threads, 11 HTM processing threads, 33
storm executor threads). Intuitively, the best performance we
can get is to dedicate one CPU core to one HTM network. In

Fig. 4: HTM.java customized threading model

the assumption that the HTM network processing time is less
than SLO, more compact deployment strategies are possible.
We compare several deployment strategies in section IV.

IV. PERFORMANCE EVALUATION AND CASE STUDY

In regards to hardware configuration, all experiments are
conducted on a 10-node Intel Haswell cluster at Indiana
University. Each node has two 24-core Intel(R) Xeon(R) CPU
E5-2670 v3 @ 2.30GHz processors and 128GB memory.

A. Indycar dataset

Results Protocol(RP) is being used in the INDYCAR timing
system. RP definition provides telemetry and specific details
for each session results, such as rankings with markers, team
information, pit stop stats and many more. Table. I shows the
record format for the telemetry records. We use RP log of the

TABLE I: Enhanced Results Protocol and Telemetry.

Fieldname Data type Comments
No. Character Car number 4 characters max

Time Integer Time of Day in ms
Position Float Metres since start of lap (1234.56)

Speed Float MPH ie. 123.456
Engine Float RPM ie. 12345

Throttle Float % throttle
Brake Float % brake

Steering Float -1.00 .. 0.00 .. 1.00
Gear Integer 0 = Neutral, 1..6 = Gear 1 through 6

Indy500 final on the 27th of May 2018, which contained a
total of 4,871,355 records (4,464,043 are telemetry records
including warm-up rounds). The actual race has 2,373,400
records for 33 cars, that is over 75,000 telemetry records
per each car on average, and these records span over 3.5
hours. During the racing, speed metrics varies a lot due to
different types of events with Vehicle speed spans [0,238.95]
miles/hour and Engine Speed spans [0,12920] RPM. Other
metrics have smaller range, or can be discrete as Gear that
falls into the range of [0,6]. Although consecutive sensor’s
data arrival interval is at 6 to 8 records per second for each
car on average, it is not a constant rate and we’ve observed
that there are missing or delayed events for all the cars. Fig. 5
shows the distribution of time gaps between two consecutive
events (SPEED, ENGINE/RPM, THROTTLE) for all 33 cars.

0 100 200 300 400 500+
0

0.5

1

1.5

Arrival Time Interval(ms)

R
ec

or
ds

(M
ill

io
n)

Fig. 5: Distribution of time gap between two consecutive
events.

Most of the records arrive in the range [80,90] ms, less than
0.05% of the records delay more than one second.

B. System Latency

Analysis on the latency introduced by individual compo-
nents of our architecture diagram, as denoted in Fig. 2, is the
first step to enable our design deliver required SLO of latency
reduction for the IndyCar real-time application.

1) Network Latency: The Indycar application is based on
a distributed streaming system having multiple components
which are interconnected over the network. Some components
utilize local area network(LAN) while some components con-
nect to the system through the internet. Hence we carried out
benchmarks covering both of these connection types.

TABLE II: IndyCar message Latency and Jitter evaluation

No. of Cars Client-Server(ms) LAN / PubSub(ms)
min max avg min max avg

1 6 223 18.45 0.06 18.71 0.26
8 1 237 19.72 0.05 67.83 0.32

16 12 247 23.88 0.001 55.51 0.34
24 2 248 24.81 0.13 57.87 0.31
33 2 246 31.57 0.001 122.78 0.30

Intranet Latency. Since we have been initially using a file-
based data source, messages from record reader (an application
capable for reading log files and stream while keeping real
timing between consecutive events) to WebSocket server goes
through the LAN. We performed the evaluation for streaming
events of 1, 8 , 16, 24 and 33 cars to analyze the variation
of latency with respect to data volume. The ”LAN/PubSub”
latency in Table II shows that the average message flow latency
within the LAN lies within microseconds range even for the
maximum expected data volume for a race of 33 cars. Hence,
the latency of LAN messages over MQTT broker is negligible.
Internet Latency. We implemented a web-sockets based web
application to visualize the results of anomaly detection in
real-time. As the columns of ”Client-Server” in Table II,
the latency of the message flow increase proportional to the
volume of data. However, we identify that this variation is not
only because of network latency, but also due to the single
threaded nature of the web client application. In the real field
setup, we’ll be able to minimize the network overhead via data
compression and multi-threading at client.

2) Latency from standalone HTM Module: HTM keeps
learning and inference on incoming data streams. The ex-
ecution time depends on the input and the current neural

10 100 200 300+
101
103
105

Time (ms)

Fr
qu

en
cy

(a) Speed

10 100 200 300+
101
103
105

Time (ms)

Fr
qu

en
cy

(b) RPM

10 100 200 300+
101
103
105

Time (ms)

Fr
qu

en
cy

(c) Throttle

Fig. 6: Latency introduced by HTM Module for Car20 and
three metrics separately and presented in log-scale.

network status. We run experiments on the individual data
stream and draw the distribution of the processing time which
is the latency the HTM.Java module introduced. Fig. 6 shows
the performance evaluation on SPEED, RPM and THROTTLE
of Car20. 98% of the data is less than 20 milliseconds, and
99.9% of the data is less than 80 milliseconds. The average
is less than 8 ms. If including the network latency and other
overhead, deploying HTM networks for IndyCar data streams
can potentially guarantee an SLO of latency. Fig. 9 shows the
distribution of processing time of HTM.Java module, within
20 ms except for a few spikes occur at the beginning in which
the HTM network is in the learning phase.

C. Deployment of HTM Networks in a Storm cluster

We run experiments to explore the candidates of deployment
strategies - what is the SLO of latency can be achieved under
a specific deployment of HTM in Storm? Two extreme cases
include a). The best SLO if provide an unlimited resource.
We allocate one CPU core for each HTM network. b). The
SLO if given a tightly limited resource in which only one
single node is allocated. The rightmost side of the x-axis of
Fig. 7 represents latency of all 33 car data, corresponding to
the OPT-N1, N2, N4 setup. The max values are 8329, 4373,
and 1895 respectively, due to incidents such as Java Garbage
collection.

Fig. 8 shows the results of deployment for Indy500 with 33
cars and three metrics for each car for end-to-end solutions.
Under OPT-N2, 99% percent of records can be processed less
than 50 ms, 99.9% percent of records can be processed less
than 110 ms, with the average latency of 21 ms. The OPT
threading models of HTM.java enable our proposed systems
to process IndyCar data streams in real-time, at the data arrival
rate in the range of [80,90] ms as shown in Fig. 5. Note that the
latency increases with respect to the cumulative distribution

OPT-N1 OPT-N2 OPT-N4
5

15

40

65
La

te
nc

y(
m

s)
max: 3576max: 8296

max: 1784

median: 23
median: 17 median: 16
min: 5min: 6 min: 5

Fig. 7: Latency in the Storm+HTM phase. The lower & upper
whisker represents the 2 & 98 percentile.

20 40 60 80 100
Percentage

La
te

nc
y(

m
s)

OPT-N1 OPT-N2

OPT-N4

5

10

20

50

110

Fig. 8: Cumulative distribution function of latency illustrates
Service Level Objective of Latency. Deploy strategy denoted
as VER-N# , where VER is the HTM.Java module optimized
version (OPT), # is number of worker nodes.

function shift, especially when fewer resources are allocated.
However, with the optimizations on HTM.java module, we
can observe that the deployment with limited resource, OPT-
N1 (on single node), still achieves decent SLO of latency at
the time range of the average data arrival interval.

D. Anomaly Detection Evaluation

1) Anomaly Annotations: In order to evaluate the effective-
ness of the anomaly detection system, the ground truth of the
anomalies are needed. However, to make accurate annotations
on millions of data instances is difficult if not impossible.
Moreover, the purpose of our system is to help to discover
novel anomalies that are previously unknown.

We adopt a partial annotation approach on the IndyCar
dataset where only some known events are selected to be
labeled as anomalies. We focus on the following three events.
1. Crash: From the video replay of the race, there are 7 crashes
in total found during the Indy500 racing event. Furthermore,
by analysis on the flag information recorded in the timing and
scoring logs, the time window when the crashes happened can
be identified. 2. PitStop:- Like the event of crash, pit stops are
events that can be identified by the video replay and timing
and scoring logs. Usually, a pit stop lasts for 40 seconds of
which SPEED will be zero for 14 seconds. On average, the
cars run at a speed of around 220 mph. However, the SPEED
reduces to zero at pit stop and resume to its normal value
afterwards. There are 6 pit stops for each car in average. 3.
GreenFlagUp: When a crash happens, the race turns into a
controlled mode to keep safe. All the cars follow the rules to
slow down and wait for the signal of green flag. Then, the

cars speed up back to the normal racing speed. All these three
type events accompany large variations of the metrics of the
racing cars, thus, many anomalies. These partial ground truth
can then be used to evaluate an anomaly detection algorithm.

TABLE III: Annotation of Known Events for Car1

PitStop Crash GreenFlagUp
ID Time ID Time ID Time
1 16:45:40 car-33,30 16:56:03 1 16:23:00
2 17:01:01 car-10 17:11:26 2 17:09:06
3 17:26:43 car-13 17:23:07 3 17:19:14
4 17:51:36 car-18 18:17:52 4 17:31:03
5 18:15:48 car-3 18:29:26 5 18:28:27
6 18:57:40 car-24 18:40:55 6 18:39:22

car-14 19:10:18 7 18:50:45

Table. III presents an example of the annotation results for Car-
1. There are 6 pit-stops and 7 crashes during the whole race.
We use an time window about 30 seconds centered with the
event Time. The detection algorithm which detects as many
as anomalies in the left side of the time window should be
scored higher. The capability to report anomalies earlier is
preferred in real applications. Anomalies reported outside the
time windows are either false positives or UNKNOWN events.

2) Accuracy of HTM algorithm: Fig. 10 demonstrates the
anomaly detection result of HTM on IndyCar dataset. For
the annotated three types of known events, it shows that
detection on SPEED and RPM are accurate; most of the
reported anomalies lie within the annotated time window.
Missing data at 16:50:15 and 17:27:00 can be observed in the
figure but HTM shows stable performance when the missing
data present. Some false negatives exist in the results for
each metric, e.g., the GreepFlagUp event between 17:17 and
17:22 in RPM result. Fine-tuned anomaly threshold would
improve the overall accuracy and keep the balance between
false positives and false negatives, which is one of our future
work.

THROTTLE control is a critical technique to operate a
racing car at its limits. While single metric with THROTTLE
performs not as good as the other two metrics in the task
of detecting anomalies of the known event types, it detects
more subtle anomalies that the other two metrics failed to
report. As in Fig. 10, UNKNOWN-G matches UNKNOWN-
H while RPM fails, UNKOWN-C reports an area that both
RPM and SPEED contains visible abnormal patterns. These
evidences suggest that the other UNKOWN anomalies detected
by THROTTLE might provide valuable information.

3) Case Study of Crash Event: Fig. 11 demonstrates the
anomaly detection results on six metrics and is centered around
a Crash event for car-13. Within the vertical red time window
of the Crash event, all metrics can report a few of anomalies.
SPEED, RPM and STEERING response mostly after the event,
which indicates that the variance of the behavior of these
metrics are the results of the crash.GEAR is not as sensitive
as the other metrics. THROTTLE and BRAKE are interesting
that some anomalies are detected at the left side of the center,
before the collision. To verify these (unknown) anomalies

as a means to provide a warning to severe events need
further collaboration with domain experts. Current anomaly
detection results show a promising capability in the direction
of discovering unknown knowledge over the IndyCar telemetry
data streams.

Fig. 9: Distribution of Anomaly Detection Processing Time. Car13 SPEED. Anomaly Likelihood threshold set to 0.5. Red dot
scatter plot is the processing time. Red triangle are anomalies.

A

B C D E F G

H

Fig. 10: Anomaly Detection Result for Car-1. Timeline for three metrics, SPEED, RPM and THROTTLE. The horizontal
green/yellow bar represents the flag status during the race. Vertical bars represent the three anomalies types from annotations,
including GreenFlagUp, PitStop, and Crash. System report anomalies are red triangles. Dotted circles indicate UNKNOWN
anomalies. Only results from beginning to 17:54:00 are presented due to limit of space. Anomaly Likelihood threshold set to
0.5.

Fig. 11: Anomaly Detection Result for Car-13 on Crash Event. Six metrics, SPEED, RPM, THROTTLE, BRAKE, GEAR and
STEERING are included. Centered vertical red bar is the crash event of Car-13. Horizontal green/yellow bar represents the
flag status during the race. Anomaly Likelihood threshold set to 0.2.

V. RELATED WORK

Anomaly detection in time-series is a heavily studied area
of data science and machine learning [10], [12], but a vast
majority of anomaly detection methods, both supervised (e.g.
SVM and decision trees) and unsupervised (e.g. clustering),
are for processing data in batches and unsuitable for real-time
streaming applications. For streaming anomaly detection, most
methods used in practice are statistical techniques that are
computationally lightweight. These techniques include sliding
thresholds, outlier tests such as extreme studentized deviate
(ESD or Grubbs) [23] and k-sigma, changepoint detection,
statistical hypotheses testing, and exponential smoothing such
as Holt-Winters [13]. Most of these techniques focus on
spatial anomalies, limiting their usefulness in applications
with temporal dependencies. Algorithms for real-time anomaly
detection include HTM, Skyline, Twitter ADVec, KNN CAD,
Relative Entropy, Windowed Gaussian, etc. Evaluation on 58
datasets in NAB benchmark shows that HTM is one of the
state-of-the-art algorithms that provide stable and high accu-
racy. We also tested three other real-time anomaly detection
algorithms, namely online Bayesian Changepoint [6], Random
Cut Forest, and EXPected Similarity Estimation [24]. Both
HTM and EXPoSE have achieved good discover rate.

VI. CONCLUSIONS

Real-time anomaly detection on Indy500 racing event pro-
vides an interesting and challenging problem on machine
learning algorithms and distributed systems. The heteroge-
neous streams with high velocity puts stringent time con-
straints on the processing time and require a scalable system
for HTM neural networks on anomaly detection. Missing
value can also be challenging for the detection algorithm to
deliver stable output. We investigate the SLO requirements
and reduce the latency for streaming data analysis. We show
under different deployment strategies, our proposed distributed
system is capable to run complex anomaly detection algorithm
in real-time. The validation shows that HTM provides stable
performance and is promising in detecting anomalies over high
speed streaming data. We will collaborate with domain experts
to leverage the experiences and findings in this work and
make it a useful tool for anomaly detection in automotive
applications. We made our source code available online at
https://github.com/DSC-SPIDAL/IndyCar.

ACKNOWLEDGMENT

We gratefully acknowledge support from the Intel Parallel
Computing Center (IPCC) grant, NSF CIF-DIBBS 143054,
EEC 1720625 and IIS 1838083 Grants. We appreciate the
support from IU PHI, FutureSystems team and ISE Modelling
and Simulation Lab.

REFERENCES

[1] Apache Storm. https://storm.apache.org/.
[2] Hierarchical Temporal Memory implementation in Java.

https://github.com/numenta/htm.java/. [Online; accessed 1-Mar-2019].
[3] IndyCar Demo. http://indycar.demo.2.s3-website-us-east-

1.amazonaws.com/. [Online; accessed 15-Apr-2019].

[4] IndyCar Series. https://en.wikipedia.org/wiki/IndyCar Series/.
[5] The Official Site of IndyCar. https://www.indycar.com/. [Online;

accessed 1-Mar-2019].
[6] R. P. Adams and D. J. MacKay. Bayesian online changepoint detection.

arXiv preprint arXiv:0710.3742, 2007.
[7] S. Ahmad and J. Hawkins. Properties of sparse distributed represen-

tations and their application to hierarchical temporal memory. arXiv
preprint arXiv:1503.07469, 2015.

[8] S. Ahmad and J. Hawkins. How do neurons operate on sparse distributed
representations? A mathematical theory of sparsity, neurons and active
dendrites. arXiv preprint arXiv:1601.00720, 2016.

[9] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha. Unsupervised real-time
anomaly detection for streaming data. Neurocomputing, 262:134–147,
Nov. 2017.

[10] R. A. Ariyaluran Habeeb, F. Nasaruddin, A. Gani, I. A. Targio Hashem,
E. Ahmed, and M. Imran. Real-time big data processing for anomaly
detection: A Survey. International Journal of Information Management,
Sept. 2018.

[11] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas. Apache flink: Stream and batch processing in a single
engine. Bulletin of the IEEE Computer Society Technical Committee on
Data Engineering, 36(4), 2015.

[12] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey.
ACM computing surveys (CSUR), 41(3):15, 2009.

[13] C. Chatfield. The Holt-winters forecasting procedure. Journal of the
Royal Statistical Society: Series C (Applied Statistics), 27(3):264–279,
1978.

[14] X. Gao, E. Ferrara, and J. Qiu. Parallel clustering of high-dimensional
social media data streams. In 2015 15th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, pages 323–332.
IEEE, 2015.

[15] D. George and J. Hawkins. A hierarchical Bayesian model of invariant
pattern recognition in the visual cortex. In Proceedings. 2005 IEEE
International Joint Conference on Neural Networks, 2005., volume 3,
pages 1812–1817. IEEE, 2005.

[16] Guennadi Moukine. Mikhail Grachev: data Is the winning force in motor
racing. https://motorsport.acronis.com/articles/en/mikhail-grachev-data-
winning-force-motor-racing. [Online; accessed 1-Mar-2019].

[17] J. Hawkins and S. Ahmad. Why neurons have thousands of synapses, a
theory of sequence memory in neocortex. Frontiers in neural circuits,
10:23, 2016.

[18] S. Kamburugamuve and G. Fox. Survey of distributed stream processing.
[19] Y. Kataoka and D. Junkins. Mining Muscle Use Data for Fatigue

Reduction in IndyCar. Mar. 2017.
[20] A. Lavin and S. Ahmad. Evaluating real-time anomaly detection

algorithms–the numenta anomaly benchmark. In 2015 IEEE 14th Inter-
national Conference on Machine Learning and Applications (ICMLA),
pages 38–44. IEEE, 2015.

[21] S. Lee, H. Kim, D.-k. Hong, and H. Ju. Correlation analysis of mqtt
loss and delay according to qos level. 2013.

[22] Lynnette Reese. Telemetry in Auto Racing.
https://www.mouser.com/applications/automotive-racing-telemetry/.
[Online; accessed 1-Mar-2019].

[23] B. Rosner. Percentage points for a generalized ESD many-outlier
procedure. Technometrics, 25(2):165–172, 1983.

[24] M. Schneider, W. Ertel, and F. Ramos. Expected similarity estimation for
large-scale batch and streaming anomaly detection. Machine Learning,
105(3):305–333, 2016.

[25] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulka-
rni, J. Jackson, K. Gade, M. Fu, J. Donham, N. Bhagat, S. Mittal, and
D. Ryaboy. Storm@Twitter. In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’14, pages
147–156, New York, NY, USA, 2014. ACM. event-place: Snowbird,
Utah, USA.

[26] A. Vivmond. Utilizing the HTM algorithms for weather forecasting and
anomaly detection. Master’s thesis, The University of Bergen, 2016.

[27] C. Wang, Z. Zhao, L. Gong, L. Zhu, Z. Liu, and X. Cheng. A Distributed
Anomaly Detection System for In-Vehicle Network Using HTM. IEEE
ACCESS, 6:9091–9098, 2018.

[28] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica.
Discretized Streams: Fault-tolerant Streaming Computation at Scale.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, SOSP ’13, pages 423–438, New York, NY, USA,
2013. ACM. event-place: Farminton, Pennsylvania.

