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Abstract—Current techniques and systems for distributed model
training mostly assume that clusters are comprised of homo-
geneous servers with a constant resource availability. However,
cluster heterogeneity is pervasive in computing infrastructure,
and is a fundamental characteristic of low-cost transient re-
sources (such as EC2 spot instances). In this paper, we develop a
dynamic batching technique for distributed data-parallel training
that adjusts the mini-batch sizes on each worker based on its
resource availability and throughput. Our mini-batch controller
seeks to equalize iteration times on all workers, and facilitates
training on clusters comprised of servers with different amounts
of CPU and GPU resources. This variable mini-batch technique
uses proportional control and ideas from PID controllers to find
stable mini-batch sizes. Our empirical evaluation shows that
dynamic batching can reduce model training times by more than
4× on heterogeneous clusters.

I. INTRODUCTION

Distributed training of machine learning models by using
large clusters of servers is a popular technique to decrease the
model training time. Techniques and system-architectures for
distributed ML training such as Stochastic Gradient Descent
(SGD) and parameter servers are widely used to train in data
centers and cloud platforms to provide reasonable parallel
speedup.
However, current techniques and systems for distributed

model training mostly assume that the workers (i.e., the
servers) will all have the same performance and resource con-
figuration, i.e., will be homogeneous. However, virtual clusters
in data centers and especially clouds do not always exhibit this
resource homogeneity. The performance of different workers
can be affected due to performance interference with co-
located applications; workers may be throttled by the cloud
or data center provider; or the cluster may have servers with
vastly different resource configurations.
This resource heterogeneity is a key characteristic of cloud-

based applications, and distributed ML model training must
be able to tolerate and perform well even in heterogeneous
environments. However, heterogeneity presents many funda-
mental challenges to distributed training: synchronous model
updates result in stragglers causing poor parallel efficiency,
and asynchronous updates result in gradient and model stale-
ness causing poor statistical efficiency [1].
In this paper, we address the challenges of distributed ML

training in heterogeneous environments. Our goal is to make
model training “omnivorous”, and be able to run efficiently on
dynamic and heterogeneous cluster configurations in shared
data center and cloud environments. Our key insight is that
having variable, instead of uniform mini-batch sizes on differ-

ent workers, is a simple yet powerful technique for alleviating
many of the performance degradation problems in heteroge-
neous environments.
Our dynamic batch sizing mechanism adjusts the mini-batch

size on each worker based on the worker’s throughput, by us-
ing a proportional-controller [2] that minimizes the differences
in the workers’ iteration times. This dynamic batch sizing
technique permits training on clusters made up of servers
with vastly different resource configurations; and on clusters
with dynamic resource availability due to resource elasticity,
over-commitment, or preemption. The technique enables us to
train models efficiently on clusters comprising of servers with
different CPUs and GPUs, which is a key differentiator from
prior work in heterogeneous distributed training [3], [4] that
instead focuses on random worker slowdowns. The prior work
has shown that even small random slowdowns can result in the
training times increase by an order of magnitude. This is only
exacerbated with the systemic heterogeneity that we aim to
alleviate.
The dynamic batching mechanism is able to reduce stragglers

in Bulk Synchronous Parallel (BSP) training, and is designed
as zero-configuration, black-box approach that can effectively
work with different training, model, and resource configu-
rations. Our approach allows distributed training on clusters
with dynamic resource availability that are ubiquitous in cloud
environments. By mitigating the performance degradation due
to heterogeneity, our contributions enable low-cost training on
heterogeneous collections of transient cloud servers such as
EC2 spot instances [5] and Google Preemptible VMs [6], that
are up to 10× cheaper than conventional cloud servers. We
implement our dynamic batching mechanism and policies in
TensorFlow, and make the following contributions:

1) We develop a dynamic batching mechanism for data-
parallel training that continuously balances the load be-
tween workers by assigning them different sized mini-
batches based on their throughput. Our proportional-
control based technique reduces stragglers in BSP, and
allows the mixing of CPU and GPU servers. It is able to
ameliorate both static as well as dynamic heterogeneity.

2) We implement all our mechanisms and policies in Tensor-
Flow using the estimator API, which allows most models
to directly run in heterogeneous environments without
any modifications.

3) We conduct a large scale study of training performance
in various static and dynamic heterogeneity environments
using popular ML workloads. Our techniques can reduce



the training times by as much as 4× compared to existing
uniform-batching.

II. BACKGROUND & MOTIVATION

A. Heterogeneity in Data Centers and Clouds

Resource heterogeneity is pervasive in modern data centers
and clouds. In cloud environments, applications are often
deployed on clusters composed of servers (i.e, VMs) of dif-
ferent resource capacities and sizes. This static heterogeneity
is necessary for effectively using low-cost transient servers
such as Amazon EC2 spot instances [5], Google Preemptible
VMs [6], etc.
Since distributed model training is highly computationally

intensive, using low-cost transient VMs or low-priority data
center resources is a key technique for reducing training
costs [7], [8]. Transient VMs can be unilaterally preempted
by the cloud provider, which are akin to fail-stop failures.
Distributed applications that can tolerate a failure of a (small)
subset of their servers failing can benefit greatly from running
on VMs of different sizes. Past work on transient com-
puting [9], [10] has found that transient VMs of different
sizes are usually uncorrelated in their preemptions, and this
diversification significantly reduces the risk of all the VMs
preempted at the same time. Thus distributed training needs to
be “omnivorous”, capable of using different types of low-cost
low-priority servers and cannot assume homogeneous clusters
with constant resource availability.
B. Distributed Training
Training of machine learning models entails learning the

model parameters (a.k.a weights) of a given model (such
as a deep neural network) over an input training dataset.
This process is typically done through an iterative-convergent
process that gradually minimizes some loss function of the
model over the dataset, by using an optimization technique
such as Stochastic Gradient Descent (SGD) [11].
Since ML training is highly compute intensive, parallelizing

it using computational accelerators such as GPUs and TPUs
via distributed training is vital [12], [13]. In distributed train-
ing, multiple workers participate to iteratively refine the model.
A common parallelization approach is data-parallelism, where
training is launched on multiple workers, and each worker
learns and updates the model parameters by processing a small
batch of the training data [14]. Each iteration comprises of
computing model updates to the previous model parameters,
and sharing the updates with other workers to form a new
global model. Training a popular image recognition model
such as ResNet [15] requires tens of thousands of iterations
until the model’s error converges to a low-enough target.
Conventionally, workers send their updates to a smaller num-

ber of parameter servers that apply the updates and compute
an “averaged” model that is broadcasted to workers before the
next iteration [16]. Concretely, the learning process involves
iteratively computing the model parameters over K workers,
each processing a mini-batch of b items at iteration t and
computing the gradient ∇f(xk,t). The gradients from all the
workers are then collected and averaged by the parameter
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Fig. 1: Increase in the total training time compared to a
homogeneous cluster for three popular ML workloads. Both
the homogenous and heterogenous clusters have the same total
amount of computing resources.
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Fig. 2: With variable batching, we can decrease the batch size
on the slower worker, and increase the batch size on the larger
worker, so that no worker “waits” for another.

servers, and the update rule for the model parameters x is
given by :

xt+1 = xt − η
1

K

1

b

k=K∑
k=1

∇f(xk,t), (1)

where η is the learning rate parameter which is one of
the “hyperparameters” of the model that is found through
empirical search techniques.

C. Training Challenges in Heterogeneous Environments
If the computing capacities of the workers is not uniform and

constant, then data-parallel training suffers from severe perfor-
mance degradation. The performance and model quality (i.e.,
model accuracy) of distributed training is highly dependent on
the communication and synchronization of the gradient up-
dates to compute new model parameters. In bulk synchronous
parallel (BSP) SGD, new model parameters are computed after
gradients from all workers have been received. Even in ho-
mogeneous conditions, stragglers are an important concern in
synchronous data-parallel training. In heterogeneous environ-
ments, straggler workers with lower computational resources
will take much longer to process their mini-batches. Thus,
BSP suffers from poor parallel efficiency in heterogeneous
environments because of stragglers that significantly increase
the total training time.

III. DYNAMIC MINI-BATCHING

In this section, we describe our dynamic batching mechanism
and policies for distributed training. Our focus is on data-
parallel training on heterogeneous clusters of data center or
cloud servers.



A. Key Idea: Variable Mini-Batch Sizes
Conventional data-parallel training uses mini-batch SGD for

distributing and parallelizing the model training process. This
approach entails each worker processing a mini-batch of
training samples independently and computing the gradients.
The gradients are computed over the mini-batch of size b by
all the workers. Due to resource heterogeneity, the mini-batch
processing times (i.e., iteration times) across workers can be
different. This results in stragglers in the case of BSP and
staleness in the case of ASP—both of which cause a significant
increase in the model training time to a desired accuracy level.
The main insight is that the mini-batch sizes need not be uni-

form across workers—instead, the mini-batch sizes should be
proportional to the server resource availability. This variable
batching allows workers to process different amount of data.
The goal is to reduce the differences in the workers’ iteration
times to reduce stragglers and staleness. This is illustrated in
Figure 2, which shows the use of variable batching during the
training process to adjust the worker batch sizes to minimize
stragglers.
Such variable batching is compatible with distributed SGD—

we assign a mini-batch size of bk to worker k. Because
workers are processing different amounts of training data,
their contribution in the training process is no longer uniform.
In conventional SGD, the gradients from all workers are
averaged as per Equation 1. However, with variable batching,
the gradients computed by workers with larger batch sizes
need to be “weighted” more than the gradients computed using
smaller batches. Thus we scale the gradients computed by each
worker based on its mini-batch size, and the final gradients are
computed using a weighted average.
We use linear gradient scaling: gradients on worker k are

multiplied by λk such that λk ∝ bk. To maintain equivalence
with conventional uniform batching, we also require that∑

k λk = 1. This yields λk = bk∑i=K
i=1 bi

. The new weights
for the next iteration are then computed by doing a weighted
average of the gradients:

gk,t = λk∇f(xbk,t) (2)

xt+1 = xt −
1

K
η

k=K∑
k=1

gk,t, (3)

where ∇f(xbk,t) is the gradient computed using mini-batch bk
by worker k. The weighted averaging is done by the parameter
server, and preserves the convergence properties of SGD [17].
Ideally, we want perfect load balancing, and assign mini-

batch-sizes to workers such that all workers finish their it-
erations at the same time. Due to servers of different sizes
and dynamic resource availability due to interference or over-
commitment, the processing power on workers also varies.
In the next two subsections, we describe two approaches for
assigning mini-batches to workers—a simple static open-loop
allocation technique, and a closed-loop dynamic allocation that
can respond to cluster resource dynamics.
B. Static Mini-batch Allocation Policy
Instead of uniform mini-batches for all workers, our static

assignment policy computes mini-batch sizes proportional to
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(b) Variable batching.
Fig. 3: Frequency distributions of iteration times across work-
ers in a heterogeneous cluster. Worker 3 is 3x larger than
worker 1, which is 2x larger than worker 2. Variable batching
ensures that the iteration times across workers are similar.

the worker’s computing power. Because model training is
highly computation-bound, the throughput of workers is pro-
portional to the available CPU and GPU resources. Thus given
a heterogeneous cluster of K workers, we want bk ∝ Xk,
where Xk is the throughput (i.e., training samples processed
per second) of server k.
We seek to maintain the initial average mini-batch size, b0

that is provided for a given ML model. We then allocate the
mini-batches to different workers such that the batch sizes are
proportional the worker throughput, and the global batch size
is maintained: bk = b0Xk∑

i Xi
. This ensures that

∑
i bi = Kb0,

where b0 corresponds to the conventional uniform mini-batch
size. Importantly, this approach keeps the total global batch
size constant, and invariant to variable batching.
Static mini-batch allocation seeks to “equalize” the iteration

times on different workers, as illustrated in Figure 3, which
shows the distribution of iteration times for ResNet-50 (BSP)1,
with three workers in a heterogeneous cluster with (3, 5, 12)
CPU cores respectively. With uniform batching in Figure 3a,
the iteration times for the workers are different, due to the
differences in their processing powers. In contrast, with the
variable mini-batching approach, the iteration times for all
the workers have similar frequency distributions, as seen in
Figure 3b.
By reducing the gap between iteration times among workers,

the variable batching technique can reduce stragglers in the
case of BSP and thus the total training time in heterogeneous
environments. Unlike for BSP, our approach does not directly
address the root cause of slowdowns for ASP training. With
ASP, the slowdown is a result of the statistical inefficiency
arising due to multiple factors, including gradient update
staleness. However the relation between staleness and training
time is not as simple to model as the effect of stragglers on
BSP [18], [19], and is not necessarily linear. Nevertheless,
reducing the iteration gap allows us to ameliorate the staleness
and improve the total training time even for ASP, albeit not
as effectively as BSP.
Estimating throughput. We can estimate the worker through-
put required for the variable batch allocation based on the
server’s resource configuration. When workers are using only
CPU resources, a simple way is to assign batch sizes pro-
portional to the number of CPU cores. In case a distributed

1We train ResNet with BSP for all the examples and figures in this section.



training job is running on both CPU and GPU servers, we
assign batch sizes proportional to the half-precision FLOPs
(Floating Point Operations per Second) for each server. This a
one-shot method that is black box and requires no adjustment,
and is “open-loop”.
However,throughput may not be exactly proportional to the

server FLOPs. This error can cause imperfect load-balancing,
and can result in sub-optimal mini-batching. Compared to
the ideal batch sizes that equalize all iteration times, some
workers may get smaller batches and wait for workers with
larger batches. We can address this problem by dynamically
assigning mini-batch sizes, which we describe in the next
subsection.
C. Proportional-Control Based Dynamic Policy
To mitigate stragglers and staleness, it is crucial for workers

to finish processing their mini-batches simultaneously. In the
previous static technique, the mini-batches were allocated
based on the estimated relative throughput of different work-
ers.
This open-loop estimation, based on the hardware FLOPs, is

not accurate in predicting the training throughput, in two major
situations. First, the training throughput depends on intra-
worker parallel scaling characteristics governed by Amdahl’s
law. Thus the observed throughput on large workers (with
more CPUs) may be lower than what is indicated by their
core counts. Second, many scenarios yield dynamic resource
availability, which the static mini-batching approach is ill-
suited for.
Our dynamic mini-batching technique is designed to handle

throughput estimation errors, as well as handling dynamic
resource availability due to server overcommittment or inter-
mittent performance interference that lead to variable effective
throughput on the affected workers. The key idea is to contin-
uously adjust the mini-batch sizes on the workers. The goal
is to equalize the iteration times among all the workers. Let
worker k finish computing gradients for its mini-batch in time
tk. Ideally, we want ti = tj for all workers i, j.

The dynamic mini-batch adjustment uses a simple
proportional-control approach to compute the mini-batch
size of all workers. Since the goal is to equalize the batch
processing times, the “error” is τk = tk − t̄, where t̄ is the
average iteration time across all the workers. To minimize
this error, the mini-batch size is updated by ∆(b) by the
following proportional control rule:

∆(bk) = −Xkτk, (4)

where, Xk is the throughput of worker k, which can be
empirically determined as Xk = bk/tk. The new batch size
for iteration i+ 1 is computed as follows:

bi+1
k = bik + ∆(bik), (5)

Thus slower workers (t > t̄) will have a positive error
τ , and their batch sizes will be decreased. Workers whose
batch processing times are faster than average, are capable of
handling a higher load, and will get a larger batch size after
the dynamic adjustment. Simplifying the above two equations,
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Fig. 4: Dynamic batch size adjustments.

we can compute the new batch size b(1)k from the initial batch
size b(0)k as : b(1)k = b

(0)
k t̄/tk.

This policy essentially combines model-based and conven-
tional black-box PID controllers. Instead of using and tuning
an arbitrary proportionality constant like in most PID con-
trollers, we use the (estimated) throughput.
Initial mini-batch sizes. The dynamic mini-batching approach
works with any initial batch size. By default, the initial batch
sizes are allocated based on the throughput-based open-loop
variable batching approach described in the previous subsec-
tion. In that case, any error in the throughput approximation
(based on the CPU/GPU FLOPs) is corrected by the control
mechanism.
While a good starting point is desirable, it is not necessary.

The dynamic batching approach permits any initial batch
size allocation, with the caveat that the farther the initial
batch size is from the ideal (i.e., throughput proportional),
the larger number of batch adjustment steps are required to
reach the equilibrium steady-state batch sizes. For example,
Figure 4a shows the progress of the batch adjustment on three
heterogeneous workers when all the workers are assigned the
same initial batch size (which is sub-optimal). We can see
that the mini-batch sizes on the different workers converge
to their stable throughput-proportional values after only two
batch adjustments. Thus, the dynamic batching technique is
useful in situations where apriori throughput estimates are not
be known.
1) Control stability: The dynamic batch size adjustment can

be done at the end of every iteration. However, it is neither
prudent nor necessary to do so. Changing the batch size
on workers is not a zero-cost operation, because it involves
terminating and restarting the training. Furthermore, due to the
stochastic nature of training, iteration times on workers will
never converge to the exact average, and there will always
be some error which the proportional control mechanism will
try to chase. This is illustrated in Figure 4b, which shows
the mini-batch sizes “oscillating” due to the dynamic batching
adjustments.
To prevent these oscillations and reduce the overhead of batch

adjustments, we use three main techniques: dead-banding,
exponential smoothing iteration times, and lower-upper bounds
on batch sizes. We describe these approaches below:
Dead-banding. After every iteration, we compute the new
batch sizes using the proportional-control technique as de-
scribed so far. We use a dead-band for our controller: batch



sizes are updated only if the change is substantial. We compute
the difference between bi+1 − bi and do not update if this
is smaller than threshold, ∆min(b). If the change in the
batch sizes on all workers is less than ∆min(b), then no
batch readjustment is made. The threshold can be chosen
based on how sensitive we want the adjustment to be, and
it also depends on the performance overhead of readjusting
the batch sizes. For instance, current ML frameworks such
as TensorFlow do not support graceful dynamic adjustment
of batch sizes and require terminating and restarting the entire
training process, in which case a larger threshold is preferable.
Based on the TensorFlow overheads, we use a dead-band
threshold of 0.05: meaning that the new batch sizes on all
workers must be atleast change by 5%.
Exponential Smoothing. With dead-banding, we only need to
make batch adjustments at the start of the training process and
whenever the underlying resource availability of the workers
changes due to resource over-commitment or preemption. To
improve the controller stability and avoid spurious readjust-
ments, we compute the error (deviation of iteration time from
the cluster average) on multiple iterations. Specifically, the
error is computed using an EWMA (Exponentially Weighted
Moving Average) across all the iterations since the previous
batch readjustment. This provides us with the “Integrator”
component in the controller, and particularly useful to prevent
outliers.
With the dead-banding, we don’t update batches on every iter-

ation, and the moving average is computed in the interval with
no batch size updates. Assume that last batch update happened
on iteration j, and the current iteration is i. We then compute
the average of worker k: µ(k, i, j) = EWMA(tik, t

i−1
k , ...tjk).

The smoothed iteration times (µ) are used in Equation 4 to
compute the error and the batch size update.
Batch size bounds. Finally, we enforce lower and upper
bounds on mini-batch sizes on all workers. These bounds
prevent extreme batch sizes in cases of extreme heterogeneity,
and ensure that the total throughput does not drop because
of variable batching. Extremely small batches cannot use all
the hardware parallelism and yield low throughput. Similarly,
large batches may exhaust memory resources and also result in
lower throughput. This is illustrated in Figure 5, which shows
the throughput increasing with the batch size, until a sharp
decline due to memory exhaustion in the GPU, and a gradual
decline for CPU workers.
We thus allow users to specify estimates of lower and upper

bounds (bmin, bmax) of the batch sizes for all the workers. As
the training progresses and we readjust batch sizes, we get
more data points for the throughput curve. If we observe a
drop in worker throughput after increasing its batch size from
b0 to b, then we update its bmax = b0. This ensures that future
batch readjustments will not result in a drop in throughput.
Putting it all together. We can integrate all the control
stability techniques into the proportional controller. Assume
that the latest iteration is i, and the last batch-update was made
in iteration j. The pseudo-code for our dynamic batching can
be expressed as:
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Fig. 5: Training throughput (img/sec) increases with batch size,
then declines because of hitting resource (memory) limits on
the workers, especially on GPUs where the memory limit is
strict.

1) Compute exponential moving average iteration times
µ(k, i, j) for all workers k.

2) Use µ(k, i, j) in Eqn 4, 5 to compute ∆(bk) and bi+1
k .

3) Enforce batch size bounds: bk,min ≤ bk ≤ bk,max

4) Apply deadbanding check. If maxk ∆(bk)/bk >
∆min(b), update all batch sizes. Otherwise do nothing.

IV. EXPERIMENTAL EVALUATION

We conduct all our evaluation using our modified TensorFlow
implementation that monitors differences in iteration times
and dynamically adjusts per-worker batch sizes. We use the
following standard well-known training workloads:

• ResNet-50: TensorFlow’s ResNet benchmark [20], trained
on the standard CIFAR-10 dataset. We use a momentum
optimizer with a learning rate schedule of [0.1, 0.01, 0.001,
0.0002].

• MNIST CNN [21]: with Adam [22] and learning rate of
0.0001.

• Linear Regression: To show our system effectively sustains
heavy as well as comparatively lighter workloads, we perform
Linear Regression (LR) on Harvard’s bar crawl dataset [23].
Experimental environment and setup. We use the param-
eter server distribution strategy for all model training. We
appropriately scale the number of parameter servers to ensure
that they are not the bottleneck. All TensorFlow processes
(master, parameter servers, and workers) are deployed inside
Docker containers for ease of management and fine-grained
resource accounting and control. We conduct all our empirical
evaluation on a local cluster as well as on Google Cloud
Platform. The local cluster’s CPU servers have 48-core Intel
Xeon Platinum 2.10GHz CPUs and 256 GB of RAM. The
GPU is Nvidia Tesla P100-PCIe-16GB.

A. CPU Training
In this subsection, we focus on static heterogeneity when

the cluster is composed of VMs/containers of different
sizes. We are primarily interested in determining the im-
pact of heterogeneity, and not parallel scaling. Therefore,
we evaluate on clusters with different heterogeneity levels
but the same total resource capacity. For instance, we com-
pare a cluster configuration with two workers with (4, 16)
CPUs, vs. two workers with (8, 12) CPUs. For CPU-only
clusters, we define the heterogeneity level as: H-level =
max number of cores/min number of cores.
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Fig. 6: With BSP synchronization, variable batching can reduce the total training time to accuracy by up to 4×.

Local cluster. We first present the training performance across
different heterogeneity levels on our local cluster with three
CPU workers. The total number of CPU cores across the
three workers is 39, and so a H-level of 2 would yield
a (9, 12, 18) CPU cores configuration. The total training
time to reach a desired level of model accuracy across the
three different workloads is shown in Figure 6. Compared to
vanilla TensorFlow’s uniform batching, our variable batching
approach can significantly reduce the training time. In general,
the variable batching does better compared to the uniform
batching at higher heterogeneity levels, because it is able to
mitigate the stragglers. For computationally intensive ResNet,
our variable batching improves training times by 2× at H-
level of 2, and 2.4× at the highest H-level of 10. The high
heterogeneity levels result in very small workers (e.g., H-level
10 is a (2,17,20) configuration). The small workers end up
being stragglers even with variable batching’s load balancing,
because we are not able to use any parallelism inside these
small workers, yet still face the same communication and
model synchronization overhead.
The MNIST CNN also sees a performance improvement of

2×—4×. Finally, the Linear Regression workload is the least
computationally expensive, and sees the least benefit (∼ 15%)
from the load-balancing that variable batching provides, be-
cause it is communication and synchronization bound.
Importantly, our variable batching can ameliorate the

heterogeneity-induced slowdown, and can “flatten the curve”.
At a high H-level of 6, ResNet training time only increases by
2× compared to the homogenous setup (Figure 6). Similarly,
MNIST time increases by by 4×, and Linear Regression by
only 5%.
Result: Variable batching can mitigate stragglers in BSP and
can reduce training time by 4× for high heterogeneity levels.
Our technique is particularly effective in scenarios that are
computation and not communication bound.

B. GPU Training
For GPU training, we first consider an extreme heterogeneity

case where the cluster comprises of both CPU and GPU
workers. Specifically, we use a single GPU worker (Tesla
P100) and CPU worker (48-core Intel Xeon). We compare
the performance of uniform, variable, and dynamic batching
in Figure 7a.

Recall that variable batch allocation is an open-loop approach
that assigns batch sizes based on the hardware FLOPs per-
formance and not actual throughput. Compared to uniform
batching, we are able to reduce the training time by more
than 4× for the computationally intensive ResNet workload.
For MNIST, the cluster is underutilized, since workload is
not computationally bound, and we see a more modest 20%
improvement in training time with our approach.
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Fig. 7: GPU training.

The performance of the Xeon Platinum CPUs used in our
local cluster experiments is far closer to GPU performance
most cloud CPUs. For instance, the ratios of the FLOPs and
the batch size between the GPU and CPU was 0.813 : 0.187,
and thus the GPU worker is “only” 4.3× faster.
Interestingly, the dynamic batching improves performance by

about 3% compared to static variable batching for MNIST
CNN, and has a negligible effect for ResNet. This intriguing
result is because of the tradeoff of dynamic batching. For
a computationally intensive workload like ResNet, hardware
FLOPs approximates throughput, so there was not enough
opportunity for the dynamic readjustments. The kill-restart
approach poses a small performance overhead too. These two
factors “cancel out” and in most cases, static variable batching
is “good enough”.
Result: Variable batching allows efficient use of mixed GPU-
CPU clusters, and can reduce the training time by up to 4×.

We also examine training performance on a cloud cluster
with two different types of GPUs. Specifically, we run two
VMs with Tesla T4 and two VMs with Tesla P4 GPUs. The
training time of ResNet (BSP) was 90 minutes with uniform
batching, and only 20 minutes with variable batching—-a 4.5×
improvement.



V. RELATED WORK
Heterogeneous Training. The closest work is [3], which
develops synchronization techniques (DynSGD and ConSGD),
for mitigating the effects of staleness and stragglers by explic-
itly accounting for staleness using a vector-clock technique.
However much like other work in this area [4], the cluster
heterogeneity they consider is only a result of stochastic
performance variations (random worker slowdowns). Instead,
we focus on systemic and severe heterogeneity due to vastly
different resource sizes of workers. Our fundamental idea of
variable mini-batch sizes is agnostic to the synchronization
technique and can also be integrated with ConsSGD to provide
support for alleviating the random slowdowns due to perfor-
mance interference.
Heterogeneity in training is being recognized as an important

missing feature and many approaches are being developed.
[24] uses a gradient coding scheme to tolerate stragglers
due to static heterogeneity in a BSP setup. Our variable
batching technique is applicable in existing parameter server
based architectures and does not require gradient coding.
Heterogeneity for decentralized training is explored in Hop [4],
which uses a bounded staleness approach and bound the
iteration-gap. The technique is shown to be effective in case
of random worker slowdowns. Its effectiveness at high static
heterogeneity levels is less clear, since the large iteration
gaps may pose fundamental synchronization challenges in the
decentralized setting.
Resource allocation for training is also an active area of

work, and is challenging due to our incomplete first-principles
understanding of SGD scaling, and profiling-driven empirical
models are typically used. [25] shows how to do cluster
resource allocation and scheduling for ML training jobs by
developing and using an empirical performance model to
determine number of workers and parameter servers to use.
Similarly, Cynthia [26] uses an analytical performance model
for cost efficient cloud resource provisioning. In contrast,
our approach can directly start training without the need for
apriori modeling. Our design goal was to design a generally
usable mechanism that is plug-in compatible with different
resource allocation approaches, training algorithms, and treats
ML models as “black boxes”. Integrated systems and train-
ing algorithm co-design, like in Orpheus [27] that improves
consistency via periodic centralized synchronization, is an
alternative approach.
Model synchronization impacts training performance, es-
pecially in cloud environments with higher stochasticity in
server performance and network latencies. This has motivated
many synchronization techniques such as stale synchronous
parallel [28] and others [29]–[33]. The performance tradeoffs
of synchronization techniques in dynamic cloud environments
is studied in [34]. Although asynchronous approaches [1] seem
promising in heterogeneous environments, gradient staleness
is still a pernicious problem [18], [19], [35], [36].
Batch size in distributed training is one of the most crucial
hyper-parameters that affects the training performance as well
as the model convergence. Understanding these tradeoffs is

a key problem in machine learning [18], [37]–[39]. Due to
the duality between learning rates and global batch sizes [40],
adjusting the global batch size is a known technique to regulate
the errors in SGD training [41]. Adabatch [42] and [43]
describe a “batch size schedule” analogous to a learning
rate schedule. This is distinct from our dynamic mini-batch
adjustment, and the dynamic global batch schedules can easily
be incorporated into our approach. Finally, the theoretical
soundness of variable mini-batch sizes can be found in [17].
They also propose a new synchronization technique where
gradient updates are “pulled” from workers periodically, irre-
spective of their mini-batch processing, resulting in different
sized worker updates.
Acknowledgments. This work was partially supported by the
Google Cloud research credits program.
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