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Abstract—Distributed deep learning (DDL) training systems
are designed for cloud and data-center environments that as-
sumes homogeneous compute resources, high network bandwidth,
sufficient memory and storage, as well as independent and
identically distributed (IID) data across all nodes. However, these
assumptions don’t necessarily apply on the edge, especially when
training neural networks on streaming data in an online manner.
Computing on the edge suffers from both systems and statistical
heterogeneity. Systems heterogeneity is attributed to differences
in compute resources and bandwidth specific to each device, while
statistical heterogeneity comes from unbalanced and skewed data
on the edge. Different streaming-rates among devices can be
another source of heterogeneity when dealing with streaming
data. If the streaming rate is lower than training batch-size,
device needs to wait until enough samples have streamed in
before performing a single iteration of stochastic gradient descent
(SGD). Thus, low-volume streams act like stragglers slowing
down devices with high-volume streams in synchronous training.
On the other hand, data can accumulate quickly in the buffer
if the streaming rate is too high and the devices can’t train at
line-rate. In this paper, we introduce ScaDLES to efficiently train
on streaming data at the edge in an online fashion, while also
addressing the challenges of limited bandwidth and training with
non-IID data. We empirically show that ScaDLES converges up
to 3.29× faster compared to conventional distributed SGD.

Index Terms—Deep learning, Distributed training, Streaming
data, Federated learning, Adaptive compression

I. INTRODUCTION

With the advent of big data and IoT, the number of smart
devices has grown exponentially over the years. These devices
capture data across a wide range of modalities, such as im-
age/video in smartphones and surveillance camera feeds, audio
and speech from smart speakers, text/language on phone/tablet
keyboards etc. The data collected on the devices can either be
moved to a centralized server in the cloud or persist locally.
Local storage is practical when network bandwidth is limited
and data privacy is a concern.

Locally storing data presents its own challenges due to lim-
ited capacity on edge/fog devices. The problem is exacerbated
on devices with high-inflow streaming data. The data lifetime
is also influenced by device streaming rates as high-volume
streams may require more frequent storage purge or handling
via other means. Commercial solutions offer data storage in the
cloud for finite time, but this violates data privacy, incurs high

communication cost of data movement and the subscription-
based cost to store that data. Distributed deep learning (DDL)
typically assumes centralized data, where each process/device
samples training data in an IID fashion at every iteration.
However, this is not necessarily true for streaming data which
can be skewed not just in volume, but can be unbalanced
and have non-IID distribution as well. Another consequence
of training on devices with varying flow-rates is that high-
inflow devices may have to wait on low-inflow ones until
they gather enough samples corresponding to the mini-batch
set for training. Thus, devices with low-volumes of streaming
data can be essentially perceived as stragglers that slow down
distributed training.

In DDL, gradients computed locally are aggregated into a
global update which is propagated back to the devices before
proceeding to the next iteration. The size of the gradients
communicated is of the same scale as the number of trainable
parameters in the network, which can span over hundreds of
millions or even billions for modern language and vision mod-
els. Using single-precision (32-bit) floats to represent gradients
means that hundreds of megabytes or even gigabytes of data
needs to be exchanged at every iteration. Thus, heterogeneity
in data inflow among devices, unbalanced-ness in device-local
data, finite memory/storage and limited bandwidth violate
assumptions of conventional distributed training designed for
HPC and cloud.

In this paper, we build a streaming-based distributed train-
ing framework cognizant of the aforementioned issues that
we call ScaDLES: {Sca}lable {D}eep {L}earning over
{S}treaming data at the {E}dge. ScaDLES1 is designed to
train across devices with heterogeneous volumes of streaming
data in an online manner. Instead of waiting for all workers to
accumulate enough samples corresponding to the mini-batch,
we choose a variable min-batch size for each device based
on its streaming rate. As a result, there is no additional wait-
time on account of low-volume devices. To aggregate gradients
across workers, we perform weighted aggregation such that a
device with a larger batch size is weighted more than those
with smaller batches. We empirically show how this weighted

1Code available at https://github.com/sahiltyagi4/ScaDLES

https://github.com/sahiltyagi4/ScaDLES


gradient aggregation approach converges faster than typical
distributed SGD.

To tackle the issues of limited memory, storage and expen-
sive disk IO, we compare two simple data storage policies:
Stream Persistence and Truncation. We simulate streams and
implement these policies with Apache Kafka [1], a popular
distributed stream processing platform.

Lastly, to deal with limited bandwidth and high commu-
nication cost of gradient reduction, we propose an adaptive
compression technique where we scale the compression ratio
based on gradient variance and adjusting to critical regions
[3] in the training phase. We apply this adaptive method on
Top-k gradient sparsification [4]. ScaDLES works in an online,
black-box manner that we validate by simulating streams with
different degrees of heterogeneity, both on IID and non-IID
data, and compare performance with conventional distributed
SGD.

II. CHALLENGES IN STREAMING DL

DDL training on streaming data presents unique challenges
that can severely impact training time and/or convergence
quality. Using data streams simulated on Kafka and Pytorch’s
[5] distributed data-parallel [6] module, we observe the effects
of heterogeneous streams, skewness in training data, limited
memory/storage and communication cost of synchronizing
model updates on the overall training time and model con-
vergence.

A. Heterogeneity in device streaming rates

In conventional DDL, multiple devices train a local model
replica on partitions sampled from the entire training dataset,
and aggregate gradient updates at the end of each iteration
either via parameter servers [7] or Allreduce using commu-
nication libraries like Open MPI [8] and NCCL [9]. With
distributed SGD, parameter update w at iteration (t+1) for N
devices optimizing loss function L(·) on a sample xi of size
bi from distribution Xi and learning rate η is given by Eqn.
(1).

wt+1 = wt − η
1

N

n=N∑
n=1

1

|bi|
∑
i∈bi

∂

∂wt
L(x(i,n), wt) (1)

Each device trains on the same mini-batch size b, making
global batch-size N · b. However, when dealing with stream-
ing data, devices can have different streaming rates. Devices
with high-volume streams can readily collect b samples, while
those with sparse inflow rates need to wait until samples equal
to b are collected. With an inflow rate of p samples/sec.,
a device would have to wait about (b/p) seconds before
proceeding to perform forward-backward pass. We consider
such variances in streaming rates among devices as streaming
heterogeneity. Heterogeneity can be inter or intra-device as
well; the streaming rate on a device itself can vary based on
traffic, usage, time of day, etc. To understand how stream-
ing heterogeneity can affect wall-clock time due to latency
incurred while gathering a mini-batch, we sample streaming

TABLE I
DEVICES IN A CLUSTER SAMPLED WITH VARYING STREAMING RATES

Distribution Sample set Mean Std. Dev.

Uniform
S1 38 24
S2 300 112

Normal
S ′
1 64 24

S ′
2 256 28
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Fig. 1. Streaming latency across batches when device stream-rates are
sampled from different distributions.

rates from different distributions and compute the latency
incurred to collect different batch sizes.

In Table I, we use two sets each of uniform and normal
distribution to sample streaming rates for devices. These two
distributions capture inflow heterogeneity that we typically ex-
pect to see in real-world settings. Uniform distribution samples
evenly across a given range, thus giving more heterogeneous
streaming rates. On the other hand, rates sampled in normal
distribution are centered around the mean so it resembles a
more homogeneous setting w.r.t the device streaming rates.
Sets S1 and S ′

1 have a smaller mean as well as variance,
while S2 and S ′

2 represent a higher mean and larger standard
deviation. [S2 ,S ′

2 ] denote higher streaming rates compared to
[S1 ,S

′
1 ].

The batch size is an important hyperparameter in deep
learning, i.e., a factor that influences convergence in neural
networks. A small batch size cannot be efficiently parallelized,
while a very large batch size increases generalization error
[10]. For now, we don’t take these considerations into account
and only see the latency incurred to gather different batch
sizes when we sample streaming rates from the described
distributions. Fig. 1 shows the streaming latency across each
set for different batches. Latency increases with larger batches
as more training samples need to be collected. Thus, the
device with the lowest streaming rate (and maximum latency)
effectively becomes a straggler in synchronous training as
other devices wait on it to gather a mini-batch, perform
computation and send its local gradients for reduction.

B. Data skewness in deep learning

While collaboratively training models, data on a device
can be skewed either in volume, properties, or both. For
unbalancedness due to volume, imagine a traffic surveillance
system where devices capture identically distributed data like
frames of individual vehicles (car, bike, trucks, etc.), but the
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Fig. 2. Test accuracy for ResNet152 on CIFAR10 and VGG19 on CIFAR100
with IID and non-IID data.

volume of data on each device varies with the traffic density
on the route where the camera is installed. Skewness due to
data properties is introduced when the distribution of device-
local data varies significantly from the overall data distribution.
For example, a vehicle recognition model running on a video
surveillance system installed in a subway captures images
of trains, while devices installed on the airport cover flying
vehicles only. Thus, training data has non-IID distribution as
it has partial labels only (like a train or a plane). Privacy-
sensitivity and large volumes of data on constrained networks
make it unfeasible to move it to a centralized location like the
cloud.

We train two popular image classifers: ResNet152 [11]
and VGG19 [12] on skewed data to observe the impact
of unbalanced and non-IID distribution on convergence. We
induce non-IID distribution of CIFAR10 and CIFAR100 [13]
by mapping a subset of labels to a unique device. We train
on 10 devices for CIFAR10 such that a single label resides
on one device, while we train CIFAR100 on 25 devices
by mapping 4 labels to a single device. Using Top-5 test
accuracy as the performance metric, Fig. 2 shows the result of
training ResNet152 on CIFAR10 and VGG19 on CIFAR100.
For comparison, we also show the corresponding performance
of training with data partitioned in an IID manner. The model
quality degrades considerably on non-IID data for both models
and datasets.

C. Limited Memory and storage

With high volumes of streaming data, further processing and
storage can be costly or even unfeasible due to limited physical
resources. Limited memory presents challenges even in data-
center settings where GPU memory is significantly lower than
system memory. Training a neural network on a GPU requires
storing model parameters (a.k.a weights), gradients computed
in backward pass, activation maps as well as training batches.
Fig. 3 shows how GPU memory utilization varies on NVIDIA
V100 GPUs based on the mini-batch size and the kind of
optimization used. Keeping all other hyperparameters fixed,
memory usage increases in a near-exponential fashion with
batch size (Fig. 3a). From Fig. 3b, memory consumption also
increases as we move from mini-batch SGD to Nesterov’s
momentum [14], and then to Adam optimizer [15]. Nesterov’s
momentum needs more memory than mini-batch SGD since it
keeps parameter updates from the previous timestep as well.
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Fig. 3. GPU memory utilization in DDL.

Adam optimizer consumes even more memory since it stores
both first and second order updates from previous timestep.
Even though devices designed for the edge are now more
capable than ever, its still more resource constrained than
dedicated data-center hardware. This makes training neural
networks on the edge even more challenging.

Since neural network training is compute-intensive, it is
difficult to train models on streaming data at line-rate. High
synchronization overhead to aggregate updates further inhibits
linear scaling of DDL. As a result, data quickly accumulates
if the streaming rate is higher than the processing rate.

The size of streaming queues can quickly blow up in dis-
tributed training, be it on-disk or in-memory. We formulate this
as follows: suppose each device Di among [D1 ,D2 , ....Dn ]
devices has a fixed streaming rate of S (i) samples/second.
The devices collaboratively train a model with average batch-
size bi (i.e., bi =

∑j=n
j=1 bj/n). Consider a scenario where

a devices’ streaming rate is larger than the training batch-
size, i.e., S (i) > bi . A single iteration in distributed training
involves calculating loss, computing gradients, aggregate and
apply updates; let’s denote this time on device i as ti . At
initial timestep ts = 0, S (i) samples arrive each second at i
which then processes bi samples from it. In the time ti that i
completes one training iteration, about (ti · S (i)) more samples
arrive in addition to the residual (S (i) − bi) that weren’t used.
Thus, there are (S (i) − bi)+ ti ·S(i) samples enqueued in the
streaming buffer at timestep ts = 1. At timestep ts = 2, there
are 2(ti + 1 )S (i) − 2bi samples in the buffer.

The queue size increases over time on account of residual
samples from previous timesteps. We generalize the number
of accumulated samples Qi on device i after T timesteps in
Eqn. (2) and note that Qi scales linearly with T .

Qi = (ti · Si − bi) · T + S (i) ∀ ti · S(i) ≥ bi (2)

As a timestep corresponds to an iteration in DDL, buffer size
can increase dramatically when T is large, which is typical
for neural networks to run for thousands of iterations. To limit
Qi from blowing up, one could argue to set bi to ti · S (i).
In that case, Qi is always equal to S (i) irrespective of the
value of T . However, bi is a hyperparameter that may require
careful tuning. Using ti · S (i) as batch size can be impractical
if the streaming rate is too high or too low. A small batch-
size doesn’t leverage parallelism while a large bi would hurt
generalization performance.
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Fig. 4. DDL on streaming data is limited by memory/storage as well as
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TABLE II
DATA ACCUMULATED WITH STREAMING IN DDL

Model t S Data accumulated at T steps (GB)
(s) (img/s) T = 103 T = 104 T = 105

ResNet152 1.2
100 0.35 3.5 34.33
600 2.06 20.6 200.6

VGG19 1.6
100 0.47 4.69 46.8
600 2.75 27.5 274.83

Assuming high streaming rates and considerable iteration
times in DDL due to limited compute and bandwidth at the
edge, Eqn. (2) reduces to

Qi = (T · ti · S (i) + S (i)) if (ti · S (i))� bi (3)

We simulate how Qi increases with T as stated in Eqn. (3).
The results are illustrated for different tS values in Fig. 4a. The
y-axis takes the log (with base 10) of the samples accumulated.
As tS increases, so does the corresponding buffer size. We
note that when tS ≈ 0 , the buffer only holds S samples at
any given time. Such a setting describes a hypothetical system
where the total iteration time is negligible regardless of the
streaming rate.

To gauge buffer requirements with streaming data in real-
world settings, we measure the space needed to store [32×32]
colored images for training ResNet152 and VGG19. For mini-
batch size 64, the models have average iteration times of
1.2 and 1.6 seconds respectively. Table II tabulates how
training samples accumulate after 1K, 10K, 100K timesteps
for these iteration times. As T increases, so does the storage
requirements to hold the data. Optimized stream processing
platforms like Kafka reduce memory footprint by storing
messages on-disk as partitions, and then deleting the data
based on some retention policy once the messages are suc-
cessfully consumed. However, persisting data on-disk becomes
unfeasible especially on the edge as data keeps accumulating
with the iterations.

D. Synchronization overhead

Although training neural networks on GPUs can signif-
icantly reduce the computation time, DDL can still incur
significant overhead due to periodic gradient synchronization.
Training ResNet152 and VGG19 on 8 NVIDIA K80s takes

about 80 to 90% of the total iteration time in gradient synchro-
nization. Additionally, communication cost tends to increase
with the number of devices participating in training. Increasing
the network bandwidth brings down the synchronization cost
to only a certain extent and saturating thereafter [2].

The 8 GPUs are connected via 5Gbps ethernet for which
we plot the communication time to synchronize gradients
for Transformer [16], ResNet152 and VGG19. Fig. 4b incurs
higher communication time as the model size increases.

III. BACKGROUND AND RELATED WORK

A. Handling unbalanced and non-IID data

Neural network training under constraints like privacy-
sensitivity, skewness due to non-IID and unbalanced data has
been well studied under the premise of federated learning. In
federated training, devices train on local, skewed data while
a global shared model is learned by periodically aggregating
updates from other devices. For example, FedAvg [19] collects
updates only from a fraction of total clients after certain
local epochs to reduce frequent communication cost. FedProx
[23] extends FedAvg to include partial work (to address
systems heterogeneity) and adds a proximal term to the local
objective function to deal with statistical heterogeneity in non-
IID data. Sparse Tenary Compression (STC) [18] reduces
communication by combining Terngrad [24] quantization with
Top-k [25] sparsification, and is shown to perform better than
FedAvg on both IID and non-IID data. Zhao et al. [17] account
for data skewness due to weight divergence among devices’
local model replica and measure it with earth mover’s distance
(EMD) between device-local and overall data distribution.
To facilitate development of federated learning systems and
algorithms, benchmarks like FedML [20] and LEAF [21] have
been developed.

B. Dealing with limited memory

As neural networks have grown in size over the years, so
has their resource requirements. The memory space to hold a
model comprises of trainable parameters and a computation
graph to store gradients and activation maps computed in
forward-backward pass. Micikevicius, et al. [26] proposed
automatic mixed-precision (AMP) training with half-precision
(16-bit) floating points to reduce the memory footprint by
half. Gradient checkpointing [27] trades memory for com-
putation by flushing intermediate data from the computation
graph to reduce memory utilization. This comes at the cost
of increased computation as flushed activation maps need
to be recomputed whenever needed. Memory consumption
can be reduced by decreasing the training batch size as
well. However, this reduces parallelizability and increases the
overall training time. Deep learning frameworks like PyTorch
implement torchvision.datasets.DatasetFolder
and ImageFolder to avoid loading entire training data to
memory by reading samples from disk one batch size at a time.
But these dataloaders adhere to a rigid format for specifying
labels in the underlying directory structure. Thus, training
a model on a particular dataset may require considerable



preprocessing and designing custom dataloaders. For massive
datasets, on-disk storage can quickly blow up too as seen
previously.

C. Reducing communication cost

Algorithms like FedAvg and FedProx minimize communica-
tion overhead by choosing a low-frequency, high-volume com-
munication strategy with occasional gradient synchronization.
On the other hand, gradient compression either via sparsifi-
cation, quantization or low-rank approximations uses a high-
frequency, low-volume approach to reduce communication
cost in DDL. Sparsification techniques like Topk-k [25] and
Deep Gradient Compression (DGC) [28] apply sparse updates
by sending only a subset of the gradients and setting remaining
values to 0. The bit-width of floating-point gradients is re-
duced with quantization methods. Automatic mixed-precision
(AMP) training described earlier uses half-precision gradients
to achieve 2× compression. Another quantization method
called Quantized SGD (QSGD) [29] quantizes gradients while
balancing the trade-off between precision and accuracy. On
the other hand, Terngrad [24] limits gradients across three
quantization levels [-1,0,+1]. Low-rank approximations like
PowerSGD [35] minimize update cost by performing low-
rank updates that effectively work as regularization. All these
compression techniques use a fixed compression ratio through-
out training. Using a high compression ratio incurs higher
communication cost, while a small compression ratio may trim
too much useful information from the gradients. Accordian
[31] dynamically compresses gradients by detecting critical
regions in training by tracking gradient variance. We extend
this further by developing an adaptive compression strategy by
comparing entropy loss between the original and compressed
gradients.

IV. SCADLES

We propose ScaDLES to address the challenges described
in section II and accelerate DDL training on heterogeneous
streams in both IID and non-IID settings.

Heterogeneous streams: The approaches described w.r.t
federated training in section III consider either systems het-
erogeneity or statistical heterogeneity due to skewed and non-
identical data. Training neural networks synchronously on
multiple devices with heterogeneous data streams suffers from
stragglers. A device i among n devices with the lowest stream-
ing rate S (i) ∈ [S (1),S (2), ...S (n)] can become a bottleneck
depending on the mini-batch size since all other devices have
to wait on i to gather enough training samples bi and proceed
an iteration. Additionally, streaming rates can vary at intra-
device level at the edge too, depending on factors like battery
level, time of day, usage, etc. This wait-time incurred due to
streaming latency can thus slow down training.

To mitigate the impact of streams with lower inflows,
we propose performing variable computation where we set
bi ∀ i ∝ S (i). Thus, we minimize streaming latency by setting
device batch size to its streaming rate. As a result, some
devices with high volume streams train on a large batch-size

while the low volume devices use a smaller batch-size, and
wait-times due to streaming latency are avoided. Since the
amount of work done on each device is different, we perform
weighted aggregation rather than a simple average to get the
shared global updates. At iteration t , device i trains with
batch-size corresponding to its streaming rate S

(t)
i and scales

the computed gradients g
(t)
i by factor r

(t)
i and updates the

parameters as:

r
(i)
t =

S
(i)
t∑n

j=1 S
(j)
t

:

n∑
j=1

r
(j)
t = 1.0 (4a)

g̃t =

n∑
j=1

r
(j)
t · g(j)t (4b)

wt+1 = wt − ηscaled · g̃t (4c)

The global batch-size with weighted gradients from Eqn. 4a
is
∑n

j=1 S (j ). As streaming rates can vary both inter and intra-
device, so does the global batch-size. To ensure extremely
high streaming rates don’t increase the global batch-size so
much that it degrades generalization performance, we add a
linear scaling rule as suggested in [32], [33]. Essentially, linear
scaling adjusts the learning rate in proportion to the batch-
size, i.e., learning rate is increased if the batch-size increases,
and vice versa. When the batch-size is multiplied by factor k,
multiply the base learning rate by k as well. If the base global
batch-size is B , then we scale the base learning rate as

ηscaled = γscaled · η : γscaled =

∑n
j=1 Sj

B

Even with a linear-scaling rule for training with larger
batches, model quality still may suffer with extremely large
batches in high volume streams. Likewise, using a batch-size
too small is not efficient from parallelization perspective. Thus,
we set bi = S (i) as long as the device batch-size is bounded
in the range bmin ≤ bi ≤ bmax , else we use the corresponding
min-max for training.

Limited memory and storage: The buffer size can grow
quickly due to continuous data streams and considerable
iteration times at the edge. The accumulated data can either
reside in memory like a buffered queue, and reside on-
disk to reduce memory footprint like in Kafka. By default,
we could keep all the data streaming in and store it until
processed successfully. We refer to this policy as Stream
Persistence. As seen from Table II, accumulated samples keep
increasing over the iterations depending on the stream-rate.
Looking at Eqn. 2, buffer size grows to O(S (i)T ) after T
iterations. Stream persistence makes sense especially when
devices have sufficient memory or storage to hold the data,
like in data-centers, cloud or high-capacity fog devices. In
Stream Truncation, we discard the residual samples and hold
just enough data corresponding to the device’s streaming rate
S (i). As a result, storage requirements for stream truncation is
O(S (i)) at any given time, which is significantly smaller than
stream persistence.



Unbalanced and Non-IID data: Fig. 2 demonstrates how
model quality degrades when training with non-identical data.
This happens since each device contains only a subset of train-
ing labels that are not representative of the entire distribution.
Thus, parameters learned by device-local model replicas are
skewed, and so is the aggregated model. To deal with non-IID
data, we propose randomized data-injection where a fraction
of the training devices share partial training samples with
other devices. Particularly, at every iteration a device randomly
chooses a subset α of the total devices D to share fraction β of
its streaming data βS (i) ∈ [αD ]. Together, (α, β) determine
what set of devices share how much of their training samples
with other devices in DDL. Data injection helps improve the
overall data distribution by making the device local data more
representative of the complete dataset. However, this implies
a trade-off between high model quality on account of better
data distribution and privacy concern arising from moving data
away from the devices. Privacy violation is greatly minimized
by choosing only a subset of devices randomly (from α) and
broadcasting only partial data (determined by β).

High communication cost: Federated algorithms reduce
communication cost either with low-frequency, high-volume
or high-frequency, low-volume communication strategy. We
focus our efforts on the latter by looking at various gradient
compression techniques. Rather than using a static compres-
sion ratio throughout training that can be detrimental to the
final model accuracy, we look into adaptive compression. Prior
work keeps track of the moving average of gradient variance
to detect critical regions in training [30], [31], [34]. Gradients
are large initially, but get smaller as the model evolves and
training continues. Thus, we can use low compression in the
beginning and higher compression later. We implement an
adaptive compression strategy with Top-k sparsification which
compares entropy loss between compressed and uncompressed
gradients. Gradients compressed to top k% are used if the
variance between compressed and uncompressed tensors falls
below threshold δ; original, uncompressed tensors are commu-
nicated otherwise. The intuition is that if the top k% gradients
have most of the information as the uncompressed gradients
within the margin of δ, then remaining gradients are relatively
less meaningful that don’t greatly contribute towards model
update and can thus be ignored. We track of the variance of
compressed and uncompressed gradients at every iteration by
keeping exponential weighted moving average (EWMA) and
implement the communication rule for adaptive compression
on gradients g for a device as follows:

send(Topk(g)) if
||g|2 − |Topk(g)|2|

|g|2 ≤ δ else send(g)

Compression threshold, denoted by δ determines the degree
of relaxation we impose on the compressed tensors to be
eligible for communication. A small δ penalizes compressed
tensors more severely and performs reduction only when the
compressed data captures most of the relevant gradients in
the original tensor. Constraints are loose with a larger δ

TABLE III
NEURAL NETWORKS EVALUATED

Model Parameters Data Devices Labels/device

ResNet152 60.2M
IID Cifar10 16 10

nonIID Cifar10 10 1

VGG19 143.7M
IID Cifar100 16 100

nonIID Cifar100 25 4

which allows more iterations to use compressed tensors for
synchronization.

V. EVALUATION

A. Cluster setup

We simulate streaming data with Kafka by sampling stream-
ing rates from uniform and normal distributions described
in Table I. The hardware used to evaluate ScaDLES in our
experiments comprises of 4 servers each with with 48-core
Intel Xeon E5-2650, 128 GB system memory and 8 NVIDIA
K80 GPUs connected with 5 Gbps ethernet. We mimic CUDA-
aware edge devices by spawning them as nvidia-docker
containers on CentOS linux 7.9.2009 with docker engine
20.10.17. Each device running as a container is allocated
4vCPUs, 12 GB system memory and 1 K80 GPU running
NVIDIA driver 465.19.01 on CUDA 11.3 and PyTorch 1.10.1.
We create a docker swarm network on the 5 Gbps network
interface to facilitate communication for gradient synchroniza-
tion among containers.

B. Data, models and hyperparameters

We evaluate two popular neural networks across different
streaming distributions, training dataset and cluster configura-
tions. ResNet152 uses SGD optimizer with momentum 0.9 and
weight decay 0.0001 while adopting a learning rate schedule
with initial lr 0.1 that decays by 0.2 after 75, 150 and 225
epochs. We also train VGG19 momentum SGD of 0.9 and
weight decay 0.0005 with an intial lr 0.01 that decays by 0.3
after 75, 150 and 200 epochs. The model quality for both
neural networks is measured by the Top-5 test accuracy.

The cluster setup for both IID and non-IID data is outlined
in Table III. Training with IID data is performed on 16 devices
where each device is equipped with a K80 GPU. We partition
non-IID data by mapping a device to a unique subset of labels.
Non-IID CIFAR10 is trained on 10 devices where each device
contains only a single label. We train non-IID CIFAR100 on
25 devices such that each device is mapped to 4 unique labels.

C. Streaming data for DDL

We use Apache Kafka v3.1.0 to spawn a docker container
that runs a broker as well as producers. The broker-producer
container is allocated 16vCPUs, 32 GB system memory and
no GPU since it doesn’t participate in model training. We
configure the container with 8 network threads, 4 IO-threads
and 1 partition per topic. The sole purpose of this container
is to host the Kafka broker and launch multiple producer
processes such that each process publishes to a unique topic
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Fig. 5. Effective streaming rates achieved when scaling to multiple topics.

corresponding to a device. Thus, there are as many topics as
the number of training devices. Each producer process controls
the streaming rate corresponding to a device’s topic. As for
data consumption, the training devices have a kafka consumer
running on them. The consumer implements a custom PyTorch
dataloader that batches the data and integrates into a typical
training loop that is common in deep learning training.

Since we run multiple producers from a single container
(and not a separate container for every producer), we measure
the effective streaming rate achieved with our proposed setup
to ensure we meet the target stream-rates in our experiments.
We scale up the number of concurrent producers (i.e., topics)
and measure the observed streaming rate. For e.g., 32 streams
in Fig. 5a imply 32 producers publishing to 32 topics at 100
samples/sec. Fig. 5 shows the density estimates of observed
streaming rates with targets of 100 and 600 samples/sec.
For each target rate, we scale up the number of concurrent
producers to 1, 4, 8, 16 and 32. We achieve nearly the same
target of 100 samples/sec as shown in Fig. 5a. For the
600 samples/sec target, the effective streaming rate decreases
noticeably beyond 16 concurrent streams. We could likely
improve this by increasing the number of network threads and
partitions per topic, but this setup sufficed for the evaluations
we perform in this paper.

D. Weighted aggregation in heterogeneous streams

We use a batch-size corresponding to a devices’ streaming
rate in ScaDLES to avoid wait-times on account of possible
streaming latency. To enforce bounds on the batch-size used,
we set bmin and bmax to 8 and 1024 respectively, although
stream-rate for any device remains within this range regardless
of the streaming distribution. The waiting time can especially
be long in highly heterogeneous streams when a devices’
streaming rate is lower than the mini-batch size configured
prior training. There is no waiting time high-volume streams
with low-batch size settings. However, the buffer size can grow
quickly over time in that case. We compare ScaDLES with
conventional DDL training for batch-size 64 irrespective of
the device streaming rates. We look at the convergence curves
and buffer buildup over training epochs to compare the two.
The streaming rates for the 16 devices were sampled from the
distributions outlined in section II. Uniform distributions are
more heterogeneous compared to normal distributions (2/3rd
values lie within 1 standard deviation from the mean in the
latter).
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Fig. 6. Convergence in conventional DDL vs. weighted aggregation approach
in ScaDLES.

Fig. 6a shows results for ScaDLES and conventional DDL
using device stream-rates sampled from S1 that converges
3.33× and 1.92× faster in ScaDLES. Conventional DDL
converged with higher final accuracy in S2 due to large
batches used for training by ScaDLES with this distribution;
about 4.5K in ScaDLES compared to only 1K in DDL.
Linearly scaling the learning rate at batches this large did not
significantly improve ScaDLES’ generalization performance.
Devices sampled from S ′

1 achieved around 3.6× and 4×
speedup with ScaDLES while still achieving higher final
accuracy. Using larger batches and linear scaling proved to
be beneficial in this case. Lastly, Fig. 6d uses S ′

2 distribution
where ResNet152 performs similarly for both ScaDLES and
DDL, while VGG19 performs better with our approach.

E. Managing limited memory and storage

We first look at how streaming data gets accumulated in
a device with the default persistence policy. For the same
runs described in the previous section, we plot how samples
get accumulated over the iterations for different sampling
distributions in Fig. 7. We plot logarithm of the accumulated
samples with base 10. The buffer size is smaller in ScaDLES
compared to DDL training for the same persistence policy.
This is because ScaDLES uses batch-size S (i) while we use a
smaller batch-size 64 in conventional DDL. S2 and S ′

2 have
larger buffer sizes since they represent higher volume streams
compared to S1 and S ′

1 . DDL occupies 2× and 3.5× more
space with ResNet152 and VGG19 in S1 . ScaDLES holds
3.6× and 641× less data than DDL for S2 . Comparing Fig.
6b and Fig. 7b, we see the lower buffer size in ScaDLES came
at the cost of lower final accuracy due to large-batch training.
ScaDLES has 4.7× and 5× smaller buffer in S ′

1 , and 3.9×
and 42× lesser data with S ′

2 distribution.
Although ScaDLES accumulates lesser samples than con-

ventional DDL, we can further lower the buffer size for
continuous data streams. With stream truncation, data in
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Fig. 7. Buffer size increases with training iterations

TABLE IV
BUFFER-SIZE REDUCTION WITH TRUNCATION POLICY

Dist. Model Persistence Truncation Reduction

S1
ResNet152 2.9× 105 129 2238×

VGG19 1× 105 118 848×

S2
ResNet152 4.36× 106 633 6889×

VGG19 4× 106 523 7830×

S ′
1

ResNet152 6.2× 105 143 4340×
VGG19 3.7× 105 129 2861×

S ′
2

ResNet152 3.6× 106 384 9429×
VGG19 2.5× 106 360 6956×

buffer exceeding the samples that just streamed in is simply
discarded. The buffer size with truncation policy is constant
as long as the streaming rate is continuous. On the other hand,
persistence policy grows with each passing iteration. Table IV
shows the final buffer size to reach 95% and 84% accuracy on
ResNet152 and VGG19. The table also reports reduction with
truncation relative to persistence policy. We observed buffer
reductions from 850× to 9400× depending on the distribution.

F. Data-injection for non-IID and skewed data

Data-injection helps improve overall model quality when
dealing with non-IID data. The degree of data-injection is
determined by (α, β) parameters that determine the subset of
devices to send partial data. We evaluate four (α, β) sets in
ScaDLES: (0.5, 0.5), (0.25, 0.25), (0.1, 0.1) and (0.05, 0.05).
A value of (0.5, 0.5) means half of the devices share half of
the samples in their current batch. We plot the convergence
curves for different streaming distributions in Fig. 8 and note
significantly better performance than training merely with non-
IID data.

Some additional networking cost is associated with data-
injection as a subset of devices send partial data to other
devices. For CIFAR10 and CIFAR100 datasets, each sample
is an image 3 Kilobytes in size. For different streaming
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Fig. 9. Data transfer overhead at each iteration to handle non-IID data with
data-injection.

distributions and (α, β) parameters, we look at data exchange
among the devices in Fig. 9. The overhead is minimal and
ranges anywhere from 150 to 2000 kilobytes on average for
each training iteration.

G. Adaptive compression

We look at reduction in the overall communication volume,
i.e., cumulative single-precision floats communicated achiev-
ing target accuracy to evaluate the performance of adaptive
compression in ScaDLES. Compression ratio (CR) measures
the degree of compression by comparing the tensor size of
compressed gradients to that of the original tensors. CR
of 0.1 means compressed tensors are 1/10-th the size of
uncompressed gradients. The update size of ResNet152 (230
MB) and VGG19 (548 MB) at this CR reduces to just 23 and
55 MB respectively.

Using the adaptive compression rule described in section IV,
we measure the usage of compressed gradients for communi-
cation with Compression-to-No-Compression (CNC) ratio.
CNC ratio compares iterations using compressed gradients for
communication to the total iterations used throughout training.
The latter includes the iterations that use compression as well
iterations that use the original, uncompressed gradients for



TABLE V
COMMUNICATION REDUCTION IN ADAPTIVE COMPRESSION

Model CR δ CNC ratio Accuracy Floats sent

ResNet152

0.1

0.1 0.29 97.55% 4.43× 1011

0.2 0.99 96.81% 0.56× 1011

0.3 1.0 98.41% 0.4× 1011

0.4 1.0 98.57% 0.4× 1011

0.01

0.1 0 97.39% 6.02× 1011

0.2 0.17 97.47% 4.99× 1011

0.3 0.43 96.72% 2.56× 1011

0.4 0.99 94.97% 6.32× 108

VGG19

0.1

0.1 0 85.45% 1.3× 1012

0.2 0.08 84.74% 1.19× 1012

0.3 1.0 81.91% 1.3× 1010

0.04 1.0 81.78% 1.3× 1010

0.01

0.1 0 84.68% 1.3× 1012

0.2 0 83.98% 1.3× 1012

0.3 0 83.94% 1.3× 1012

0.4 0.004 84.39% 1.29× 1012

communication:

CNC ratio =
Tcompressed

Tcompressed + Tuncompressed

CNC ratio of 0 means that compressed tensors were not
used even for a single iteration, while CNC of 1.0 implies
all training iterations used only the compressed tensors for
exchange since there are no iterations that used the original
gradients for communication. To measure the impact of adap-
tive compression on model convergence, we tabulate the CNC
ratio, accuracy and overall reduction in communication volume
for different (CR, δ) configurations in Table V. ResNet152
running with CR 0.1 and any δ beyond 0.2 is faster as it
converges by exchanging fewer floats. A δ of 0.1 barely used
any compression for the two CRs in either of the models. The
most communication efficient configuration for ResNet152
used CR 0.01 and δ 0.4, although it results in slightly lower
test accuracy. The pattern of low communication overhead
accompanied with degradation in final accuracy was also
observed in VGG19 for CR 0.1 and δ 0.4. The CNC ratio
is high in both cases implying compression is enabled for
most iterations and thus, accuracy drop can be attributed to
model degradation commonly associated with compression.
An interesting observation in VGG19 using CR 0.01 is the
communication volume is same across all δ values and the
total floats exchanged is the same as training without any
compression. This means the adaptive strategy is not using
compression in this configuration, which is further corrobo-
rated by the CNC ratio that is 0 across all δ.

H. Overall performance of ScaDLES

Last, we look at the overall performance gains in ScaDLES
by combining weighted aggregation in heterogeneous streams,
data-injection for non-IID data, buffer reduction with stream
truncation and reducing communication with adaptive com-
pression (using CR 0.1 and δ of 0.3 in our final evaluation). We

TABLE VI
SCADLES’ PERFORMANCE GAINS OVER CONVENTIONAL DDL

Model Dist. Acc. drop Buffer red. (GB) Speedup

ResNet152

S1 −0.06% 0.6 1.89×
S2 −0.32% 5.9 1.15×
S ′
1 −0.13% 0.8 3.29×

S ′
2 −0.21% 4.03 1.42×

VGG19

S1 −1.93% 0.26 1.56×
S2 −4.18% 3.91 2.83×
S ′
1 −2.03% 0.35 2.06×

S ′
2 −1.59% 2.58 2.13×

compare against conventional DDL with fixed batch-size 64,
persistence policy and the same training schedule as ScaDLES
described in section V.

For the same streaming distribution, ScaDLES’ performance
is measured relative to conventional DDL in terms of drop in
test accuracy, reduction in buffer size using truncation policy
(in Gigabytes) and overall training speedup to convergence
w.r.t wall-clock time. A negative accuracy drop means Sca-
DLES achieved lower accuracy by that margin. Table VI shows
the results for IID training. ResNet152 trains on ScaDLES
with a maximum of drop of 0.32% in final model accuracy
compared to conventional DDL with stream-rates sampled
from S2 . Training with ScaDLES is also much faster; ranging
from 1.15× to 3.29× faster than DDL. For high-volume
streams S2 and S ′

2 , truncation policy saves up to 5.9 GB in the
occupied buffer-size. ScaDLES achieved lower final accuracy
in VGG19 by as much as 4.18%. We observed that VGG19
is more sensitive to the combination of ScaDLES’ large-batch
training and adaptive compression than ResNet152. However,
VGG19 still reduces buffer-size by up to 3.91 GB and reduces
wall-clock training time by 1.56× to 2.83× over conventional
DDL.

As for training with non-IID data, conventional DDL was
unable to reach the same convergence targets as ScaDLES’
data-injection strategy for either of the neural networks. Con-
ventional DDL with non-IID data saturated ResNet152 at 56%
test accuracy, while VGG19 did not improve beyond 35%. For
the same non-IID training, ScaDLES achieved at least 93.6%
and 77.8% accuracy for ResNet152 and VGG19 across the
four stream-rate distributions.

VI. CONCLUSION

This paper presents the notion of training neural networks
efficiently over streaming data at the edge. Streaming data
presents challenges affecting both parallel and statistical effi-
ciency of distributed training. ScaDLES addresses the problem
of heterogeneous streaming rate among devices with weighted
aggregation where each device trains on the samples accu-
mulated in the stream and avoids wait-time or large buffer
accumulation. Since it is difficult to perform training at line-
rate, samples streaming into the device can accumulate over
time. ScaDLES uses a simplistic truncation policy to keep the
buffer size in check. Devices on the edge commonly have



non-IID and unbalanced data. Data-injection strategy improves
model convergence significantly in such scenarios. Lastly,
we propose an adaptive compression technique to deal with
limited bandwidth on the edge and high communication cost
in large deep learning models. We simulate different degrees of
streaming heterogeneity by sampling from both uniform and
normal distributions and evaluate popular image classifiers.
Our empirical evaluation shows that ScaDLES can converge
anywhere from 1.15× to 3.29× faster than DDL. At the same
time, ScaDLES reduces the number of accumulated samples
in the buffer by 848× to 9429×.
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