
ScaDLES: Scalable Deep Learning
over Streaming data at the Edge
Sahil Tyagi and Martin Swany

Luddy School of Informatics, Computing and Engineering

Indiana University Bloomington, USA

Department of Intelligent Systems Engineering

Introduction
SECTION 1

• From privacy and network bandwidth perspective, data should be stored
on device only

• The problem is exacerbated on the edge due to limited storage and high
streaming rates!

• Smart devices growing exponentially in recent years

• Data captured across different modalities: image, audio, text, etc.

• Thus, a lot of data is stored transiently that could otherwise be useful as
training data for various deep learning tasks

Challenges in DL training on
streaming data

SECTION 2

Heterogeneity in device streaming rates

• Each device trains with mini-batch b, but training on streaming data can
have different wait times due to different streaming rates

• Distributed synchronous SGD equation:

• Variances among device streaming rates becomes a source of
heterogeneity; device with lowest streaming rate thus acts as a
straggler!

• With streaming rate p, device i needs to wait (b/p) seconds!

• We sample device streaming rates from
uniform and normal distributions

• Heterogeneity can be inter or intra-device as well

• Sets S1 and S1’ have smaller mean and variance, while S2 and S2’
have higher mean and standard deviation (thus, high stream-rates)

Data skewness and unbalanced data

• Data on individual devices can be skewed in
volume, properties, or both!

• Moving data away to improve IID-ness
raises privacy concerns

• Skewness occurs when distribution of
device-local data varies from overall dist.

• ResNet152 and VGG19 trained on
CIFAR10/100 on IID vs non-IID data

Limited Memory

• GPU/TPU memory is much lower than
system memory

• DL training requires storing weights,
gradients, activation maps and training
batches

• Memory util. increases with batch-size in a
near-exponential fashion!

• Memory util. also varies with SGD variant

Limited Storage
• Difficult to train models on streaming data at

line-rate; thus, data accumulates when
stream rate > processing rate

• Accumulated buffer size increases over time
on account of residual samples from previous
timesteps

• Assuming high stream-rates and considerable
iteration times, buffer size approximates to:

Communication overhead

• Accelerators like GPUs/TPUs bring down
computation time

• Distributed DL scaling still limited by
significant gradient sync time; adding D
devices doesn’t increase t/put by D!

• Gradient synchronization time is
considerable in AllReduce due to large
model size and limited bandwidth

ScaDLES
SECTION 3

Heterogeneous streams
• To eliminate wait times on low-inflow devices, set worker batch-size

proportional to its streaming rate

• Due to variable computation on each device, we perform weighted mean

• To limit extreme batch sizes in high-streams and degrade generalization,
scale the learning rate as well

Dealing with limited memory and storage

• Accumulated buffer size can grow quickly due to continuous data streams
and considerable iteration times

• By default, data streaming-in is queued until processed successfully:
Stream Persistence

• But buffer size grows as O(S*T) after T iterations

• In Stream Truncation, we discard residual samples and hold enough
data corresponding to device stream-rate; storage requirement is always
O(S) in that case

Dealing with unbalanced and non-IID data

• Training on skewed data degrades model quality as per-device labels are not
representative of the overall data distribution

• We add randomized data-injection to improve data distribution

• Here a fraction of random devices share partial training samples with other
devices in the cluster; subset of devices share fraction of its streaming
data; together, determine what set of devices share how much of
their training samples with other devices in distributed training

𝛼 𝛽
(𝛼, 𝛽)

• Involves trade-off between model quality and privacy risk

Dealing with high communication cost

• Communication overhead is lowered either with low-frequency, high-
volume (e.g., FedAvg) or high-frequency, low-volume strategies (e.g.,
compression)

• ScaDLES applies an adaptive compression technique over Top-k
compression

• Compressed gradients are communicated if variance between
compressed and original gradients falls below threshold ; otherwise,
original tensors are sent for weighted AllReduce

𝛿

Evaluation
SECTION 4

Cluster setup
• We simulate streams with Kafka by

sampling stream-rates from uniform and
normal distributions

• Each training device is spawned as a
docker container with 4vCPUs, 12GB
system memory and 1 NVIDIA K80 GPU

• Containers communicate on a docker
swarm network on 5Gbps network
interface

Simulating streaming data
• A docker container with 16vCPUs and 32GB

memory runs Apache Kafka broker and
producers

• Container configured with 8 network and 4 IO
threads, with 1 partition per topic

• Total topics = total participating devices

• Effective streaming rate could be improved for
600 samples/s by increasing n/w threads and
partitions per topic

Weighted aggregation in heterogeneous streams
• Comparing ScaDLES with

conventional distributed training
with per-device mini-batch 64

• ScaDLES converges 3.3x and
1.9x faster under S1; DDL has
more accuracy under S2 due to
large batches in ScaDLES (4.5K
vs. 1K)

• S1’: ScaDLES converges 3.6x
and 4x faster

Managing limited memory and storage

• We look at the number of
accumulated samples with
persistence and truncation policies

• Each sample is a 32x32 image of
size 3Kb

• With stream persistence, ScaDLES
occupies up to 3.5x less space with
S1, 641x less space with S2, 5x
with S1’ and 42x less space with
S2’

Data-injection for non-IID data

• We evaluate four sets of parameters:

• (0.5, 0.5)

• (0.25, 0.25)

• (0.1, 0.1)

• (0.05, 0.05)

(𝛼, 𝛽)

Overhead of data-injection strategy

Adaptive compression

• Using the adaptive compression
rule, CNC measures the fraction
of training iterations using
compression to the total iterations

• Compression ratio (CR)
measures the degree of
compression; 0.1=10x, 0.01 =
100x

Overall performance in ScaDLES

• Comparing ScaDLES with typical DDL w.r.t final accuracy, buffer size
reduction and overall speedup

Conclusion
SECTION 5

• Distributed training over streaming data is challenges by both parallel
and systems heterogeneity.

• ScaDLES uses weighted aggregation, stream truncation, randomized
data-injection and adaptive compression to accelerate distributed
training over streaming data at the edge

• In the best case, ScaDLES converges 3x faster than conventional DDP
training while occupying 33% lesser buffer space.

• In the worst case, ScaDLES results in up to 4.18% lesser final accuracy
in highly heterogeneous streams due to generalization drop in large-
batch training

