

Department of Intelligent Systems Engineering

ScaDLES: Scalable Deep Learning over Streaming data at the Edge

Sahil Tyagi and Martin Swany

Luddy School of Informatics, Computing and Engineering

Indiana University Bloomington, USA

Introduction

- Smart devices growing exponentially in recent years
- Data captured across different modalities: image, audio, text, etc.

- From privacy and network bandwidth perspective, data should be stored on device only
- The problem is exacerbated on the edge due to limited storage and high streaming rates!
- Thus, a lot of data is stored transiently that could otherwise be useful as training data for various deep learning tasks

Challenges in DL training on streaming data

Heterogeneity in device streaming rates

Distributed synchronous SGD equation:

$$w_{t+1} = w_t - \eta \frac{1}{N} \sum_{n=1}^{n=N} \frac{1}{|b_i|} \sum_{i \in b_i} \frac{\partial}{\partial w_t} \mathcal{L}(x_{(i,n)}, w_t)$$

- Each device trains with mini-batch b, but training on streaming data can have different wait times due to different streaming rates
- With streaming rate *p*, device *i* needs to wait (*b/p*) seconds!
- Variances among device streaming rates becomes a source of heterogeneity; device with lowest streaming rate thus acts as a straggler!

- Heterogeneity can be inter or intra-device as well
- We sample device streaming rates from uniform and normal distributions

Distribution	Sample set	Mean	Std. Dev.
Uniform	S_1	38	24
	$S_{\mathscr{Q}}$	300	112
Normal	S'_1	64	24
	S'_2	256	28

Sets S1 and S1' have smaller mean and variance, while S2 and S2' have higher mean and standard deviation (thus, high stream-rates)

Data skewness and unbalanced data

- Data on individual devices can be skewed in volume, properties, or both!
- Skewness occurs when distribution of device-local data varies from overall dist.
- Moving data away to improve IID-ness raises privacy concerns
- ResNet152 and VGG19 trained on CIFAR10/100 on IID vs non-IID data

Limited Memory

- GPU/TPU memory is much lower than system memory
- DL training requires storing weights, gradients, activation maps and training batches
- Memory util. increases with batch-size in a near-exponential fashion!
- Memory util. also varies with SGD variant

Limited Storage

- Difficult to train models on streaming data at line-rate; thus, data accumulates when stream rate > processing rate
- Accumulated buffer size increases over time on account of residual samples from previous timesteps

$$Q_i = (t_i \cdot S_i - b_i) \cdot T + S^{(i)} \quad \forall \quad t_i \cdot S^{(i)} \ge b_i$$

 Assuming high stream-rates and considerable iteration times, buffer size approximates to:

 $Q_i = (T \cdot t_i \cdot S^{(i)} + S^{(i)}) \quad \text{if} \quad (t_i \cdot S^{(i)}) \gg b_i$

Communication overhead

- Accelerators like GPUs/TPUs bring down computation time
- Gradient synchronization time is considerable in AllReduce due to large model size and limited bandwidth

Distributed DL scaling still limited by significant gradient sync time; *adding D devices doesn't increase t/put by D!*

Heterogeneous streams

- To eliminate wait times on low-inflow devices, set worker batch-size proportional to its streaming rate
- Due to variable computation on each device, we perform weighted mean

$$r_t^{(i)} = \frac{S_t^{(i)}}{\sum_{j=1}^n S_t^{(j)}} : \sum_{j=1}^n r_t^{(j)} = 1.0 \qquad \tilde{g}_t = \sum_{j=1}^n r_t^{(j)} \cdot g_t^{(j)} \qquad w_{t+1} = w_t - \eta_{scaled} \cdot \tilde{g}_t$$

• To limit extreme batch sizes in high-streams and degrade generalization, scale the learning rate as well $\sum_{i=1}^{n} S_{i}$

$$\eta_{scaled} = \gamma_{scaled} \cdot \eta \quad : \ \gamma_{scaled} = \frac{\sum_{j=1}^{n} S_j}{B}$$

Dealing with limited memory and storage

- Accumulated buffer size can grow quickly due to continuous data streams and considerable iteration times
- By default, data streaming-in is queued until processed successfully: Stream Persistence
- But buffer size grows as O(S*T) after T iterations
- In Stream Truncation, we discard residual samples and hold enough data corresponding to device stream-rate; storage requirement is always O(S) in that case

Dealing with unbalanced and non-IID data

- Training on skewed data degrades model quality as per-device labels are not representative of the overall data distribution
- We add *randomized data-injection* to improve data distribution
- Here a fraction of random devices share partial training samples with other devices in the cluster; subset of devices α share fraction β of its streaming data; together, (α, β) determine what set of devices share how much of their training samples with other devices in distributed training
- Involves trade-off between model quality and privacy risk

Dealing with high communication cost

- Communication overhead is lowered either with low-frequency, high-volume (e.g., FedAvg) or high-frequency, low-volume strategies (e.g., compression)
- ScaDLES applies an adaptive compression technique over Top-k compression
- Compressed gradients are communicated if variance between compressed and original gradients falls below threshold δ ; otherwise, original tensors are sent for weighted AllReduce

$$\operatorname{send}(\operatorname{Top} k(g)) \ \text{ if } \ \frac{||g|^2 - |\operatorname{Top} k(g)|^2|}{|g|^2} \leq \delta \ \text{ else } \ \operatorname{send}(g)$$

Evaluation

Cluster setup

- We simulate streams with Kafka by sampling stream-rates from uniform and normal distributions
- Each training device is spawned as a docker container with 4vCPUs, 12GB system memory and 1 NVIDIA K80 GPU
- Containers communicate on a docker swarm network on 5Gbps network interface

CLUSTER SETUP AND E	EVALUATION ON IID	AND NON-IID DATA
---------------------	-------------------	------------------

Model	Size	Data	Devices	Label/device
ResNet152	60.2M	IID Cifar10	16	10
	00.2111	nonIID Cifar10	10	1
VGG19	143.7M	IID Cifar100	16	100
	145.710	nonIID Cifar100	25	10

Simulating streaming data

- A docker container with 16vCPUs and 32GB memory runs Apache Kafka broker and producers
- Container configured with 8 network and 4 IO threads, with 1 partition per topic
- Total topics = total participating devices
- Effective streaming rate could be improved for 600 samples/s by increasing n/w threads and partitions per topic

Weighted aggregation in heterogeneous streams

- Comparing ScaDLES with conventional distributed training with per-device mini-batch 64
- ScaDLES converges 3.3x and 1.9x faster under S1; DDL has more accuracy under S2 due to large batches in ScaDLES (4.5K vs. 1K)
- S1': ScaDLES converges 3.6x and 4x faster

Time (hrs)

(d) S'_{0} distribution

Time (hrs)

(c) S'_1 distribution

Managing limited memory and storage

- With *stream persistence*, ScaDLES occupies up to 3.5x less space with S1, 641x less space with S2, 5x with S1' and 42x less space with S2'
- We look at the number of ۲ accumulated samples with *persistence* and *truncation* policies
- Each sample is a 32x32 image of size 3Kb

В	BUFFER-SIZE REDUCTION WITH TRUNCATION POLICY					
Dist.	Model	Persistence	Truncation	Reduction		
S_1	ResNet152	2.9×10^5	129	$2238 \times$		
	VGG19	1×10^5	118	$848 \times$		
S_2 -	ResNet152	4.36×10^6	633	$6889 \times$		
	VGG19	4×10^6	523	$7830 \times$		
S'_1	ResNet152	6.2×10^5	143	$4340\times$		
	VGG19	3.7×10^5	129	$2861 \times$		
S'_2	ResNet152	3.6×10^6	384	$9429 \times$		
	VGG19	2.5×10^6	360	$6956 \times$		

Data-injection for non-IID data

- We evaluate four sets of (α, β) parameters:
 - (0.5, 0.5)
 - (0.25, 0.25)
 - (0.1, 0.1)
 - (0.05, 0.05)

Overhead of data-injection strategy

Adaptive compression

- Compression ratio (CR) measures the degree of compression; 0.1=10x, 0.01 = 100x
- Using the adaptive compression rule, CNC measures the fraction of training iterations using compression to the total iterations

$$CNC ratio = \frac{T_{compressed}}{T_{compressed} + T_{uncompressed}}$$

COMMUNICATION REDUCTION IN ADAPTIVE COMPRESSION

Model	CR	δ	CNC	Accuracy	Floats sent
		0.1	0.29	97.55%	4.43×10^{11}
	0.1	0.2	0.99	96.81%	0.56×10^{11}
	0.1	0.3	1.0	98.41%	0.4×10^{11}
ResNet152		0.4	1.0	98.57%	0.4×10^{11}
ResNet152		0.1	0	97.39%	6.02×10^{11}
	0.01	0.2	0.17	97.47%	$\begin{array}{c} 4.43 \times 10^{11} \\ 0.56 \times 10^{11} \\ 0.4 \times 10^{11} \\ 0.4 \times 10^{11} \end{array}$
	0.01	0.3	0.43	96.72%	
		0.4	0.99	94.97%	
		0.1	0	85.45%	$\begin{array}{c} 4.43\times 10^{11}\\ 0.56\times 10^{11}\\ 0.4\times 10^{11}\\ 0.4\times 10^{11}\\ 6.02\times 10^{11}\\ 4.99\times 10^{11}\\ 2.56\times 10^{11}\\ 6.32\times 10^{8}\\ 1.3\times 10^{12}\\ 1.19\times 10^{12}\\ 1.3\times 10^{10}\\ 1.3\times 10^{12}\\ \end{array}$
VGG19	0.1	0.2	0.08	84.74%	
	0.1	0.3	1.0	81.91%	
		0.04	1.0	81.78%	1.3×10^{10}
		0.1	0	84.68%	$1.3 imes 10^{12}$
	0.01	0.2	0	83.98%	1.3×10^{12}
	0.01	0.3	0	83.94%	1.3×10^{12}
		0.4	0.004	84.39%	1.29×10^{12}

Overall performance in ScaDLES

 Comparing ScaDLES with typical DDL w.r.t final accuracy, buffer size reduction and overall speedup

Model	Dist.	Acc. drop	Buffer red. (GB)	Speedup
ResNet152	S_1	-0.06%	0.6	1.89 imes
	$S_{\mathscr{Q}}$	-0.32%	5.9	1.15 imes
	S'_1	-0.13%	0.8	3.29 imes
	S'_2	-0.21%	4.03	1.42 imes
VGG19	S_1	-1.93%	0.26	1.56 imes
	$S_{\mathscr{Q}}$	-4.18%	3.91	2.83 imes
	S'_1	-2.03%	0.35	2.06 imes
	S'_2	-1.59%	2.58	2.13 imes

Conclusion

- Distributed training over streaming data is challenges by both parallel and systems heterogeneity.
- ScaDLES uses weighted aggregation, stream truncation, randomized data-injection and adaptive compression to accelerate distributed training over streaming data at the edge
- In the best case, ScaDLES converges 3x faster than conventional DDP training while occupying 33% lesser buffer space.
- In the worst case, ScaDLES results in up to 4.18% lesser final accuracy in highly heterogeneous streams due to generalization drop in largebatch training

