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Introduction
SECTION 1



• From privacy and network bandwidth perspective, data should be stored 
on device only 

• The problem is exacerbated on the edge due to limited storage and high 
streaming rates!

• Smart devices growing exponentially in recent years 

• Data captured across different modalities: image, audio, text, etc. 

• Thus, a lot of data is stored transiently that could otherwise be useful as 
training data for various deep learning tasks



Challenges in DL training on 
streaming data

SECTION 2



Heterogeneity in device streaming rates

• Each device trains with mini-batch b, but training on streaming data can 
have different wait times due to different streaming rates

• Distributed synchronous SGD equation:

• Variances among device streaming rates becomes a source of 
heterogeneity; device with lowest streaming rate thus acts as a 
straggler!

• With streaming rate p, device i needs to wait (b/p) seconds!



• We sample device streaming rates from 
uniform and normal distributions

• Heterogeneity can be inter or intra-device as well 

• Sets S1 and S1’ have smaller mean and variance, while S2 and S2’  
have higher mean and standard deviation (thus, high stream-rates)



Data skewness and unbalanced data

• Data on individual devices can be skewed in 
volume, properties, or both! 

• Moving data away to improve IID-ness 
raises privacy concerns

• Skewness occurs when distribution of 
device-local data varies from overall dist.

• ResNet152 and VGG19 trained on 
CIFAR10/100 on IID vs non-IID data



Limited Memory

• GPU/TPU memory is much lower than 
system memory

• DL training requires storing weights, 
gradients, activation maps and training 
batches 

• Memory util. increases with batch-size in a 
near-exponential fashion!

• Memory util. also varies with SGD variant



Limited Storage
• Difficult to train models on streaming data at 

line-rate; thus, data accumulates when 
stream rate > processing rate  

• Accumulated buffer size increases over time 
on account of residual samples from previous 
timesteps

• Assuming high stream-rates and considerable 
iteration times, buffer size approximates to:



Communication overhead

• Accelerators like GPUs/TPUs bring down 
computation time

• Distributed DL scaling still limited by 
significant gradient sync time; adding D 
devices doesn’t increase t/put by D!

• Gradient synchronization time is 
considerable in AllReduce due to large 
model size and limited bandwidth



ScaDLES
SECTION 3



Heterogeneous streams
• To eliminate wait times on low-inflow devices, set worker batch-size 

proportional to its streaming rate

• Due to variable computation on each device, we perform weighted mean

• To limit extreme batch sizes in high-streams and degrade generalization, 
scale the learning rate as well



Dealing with limited memory and storage

• Accumulated buffer size can grow quickly due to continuous data streams 
and considerable iteration times

• By default, data streaming-in is queued until processed successfully: 
Stream Persistence

• But buffer size grows as O(S*T) after T iterations 

• In Stream Truncation, we discard residual samples and hold enough 
data corresponding to device stream-rate; storage requirement is always 
O(S) in that case



Dealing with unbalanced and non-IID data

• Training on skewed data degrades model quality as per-device labels are not 
representative of the overall data distribution 

• We add randomized data-injection to improve data distribution

• Here a fraction of random devices share partial training samples with other 
devices in the cluster; subset of devices  share fraction  of its streaming 
data; together,  determine what set of devices share how much of 
their training samples with other devices in distributed training

𝛼 𝛽
(𝛼,  𝛽)

• Involves trade-off between model quality and privacy risk



Dealing with high communication cost

• Communication overhead is lowered either with low-frequency, high-
volume (e.g., FedAvg) or high-frequency, low-volume strategies (e.g., 
compression) 

• ScaDLES applies an adaptive compression technique over Top-k 
compression

• Compressed gradients are communicated if variance between 
compressed and original gradients falls below threshold ; otherwise, 
original tensors are sent for weighted AllReduce

𝛿



Evaluation
SECTION 4



Cluster setup
• We simulate streams with Kafka by 

sampling stream-rates from uniform and 
normal distributions 

• Each training device is spawned as a 
docker container with 4vCPUs, 12GB 
system memory and 1 NVIDIA K80 GPU 

• Containers communicate on a docker 
swarm network on 5Gbps network 
interface



Simulating streaming data
• A docker container with 16vCPUs and 32GB 

memory runs Apache Kafka broker and 
producers

• Container configured with 8 network and 4 IO 
threads, with 1 partition per topic

• Total topics = total participating devices

• Effective streaming rate could be improved for 
600 samples/s by increasing n/w threads and 
partitions per topic 



Weighted aggregation in heterogeneous streams
• Comparing ScaDLES with 

conventional distributed training 
with per-device mini-batch 64

• ScaDLES converges 3.3x and 
1.9x faster under S1; DDL has 
more accuracy under S2 due to 
large batches in ScaDLES (4.5K 
vs. 1K)

• S1’: ScaDLES converges 3.6x 
and 4x faster



Managing limited memory and storage

• We look at the number of 
accumulated samples with 
persistence and truncation policies

• Each sample is a 32x32 image of 
size 3Kb

• With stream persistence, ScaDLES 
occupies up to 3.5x less space with 
S1, 641x less space with S2, 5x 
with S1’ and 42x less space with 
S2’



Data-injection for non-IID data

• We evaluate four sets of  parameters:   

• (0.5, 0.5) 

• (0.25, 0.25) 

• (0.1, 0.1) 

• (0.05, 0.05)

(𝛼,  𝛽)



Overhead of data-injection strategy



Adaptive compression

• Using the adaptive compression 
rule,  CNC measures the fraction 
of training iterations using 
compression to the total iterations

• Compression ratio (CR) 
measures the degree of 
compression; 0.1=10x, 0.01 = 
100x



Overall performance in ScaDLES

• Comparing ScaDLES with typical DDL w.r.t final accuracy, buffer size 
reduction and overall speedup



Conclusion
SECTION 5



• Distributed training over streaming data is challenges by both parallel 
and systems heterogeneity.

• ScaDLES uses weighted aggregation, stream truncation, randomized 
data-injection and adaptive compression to accelerate distributed 
training over streaming data at the edge

• In the best case, ScaDLES converges 3x faster than conventional DDP 
training while occupying 33% lesser buffer space.

• In the worst case, ScaDLES results in up to 4.18% lesser final accuracy 
in highly heterogeneous streams due to generalization drop in large-
batch training 


