2303.06659v1 [cs.DC] 12 Mar 2023

arxXiv

Scavenger: A Cloud Service For Optimizing Cost
and Performance of ML Training

Sahil Tyagi
Indiana University Bloomington, USA
styagi@iu.edu

Abstract—Cloud computing platforms can provide the compu-
tational resources required for training large machine learning
models such as deep neural networks. While the pay-as-you-
go nature of cloud virtual machines (VMs) makes it easy to
spin-up large clusters for training models, it can also lead to
ballooning costs. The 100s of virtual machine sizes provided by
cloud platforms also makes it extremely challenging to select the
“right” cloud cluster configuration for training. Furthermore, the
training time and cost of distributed model training is highly
sensitive to the cluster configurations, and presents a large and
complex tradeoff-space.

In this paper, we develop principled and practical techniques
for optimizing the training time and cost of distributed ML model
training on the cloud. Our key insight is that both the parallel
and statistical efficiency must be considered when selecting the
optimum job configuration parameters such as the number of
workers and the batch size. By combining conventional parallel
scaling concepts and new insights into SGD noise, we develop
models for estimating the time and cost on different cluster
configurations. Using the repetitive nature of training and our
performance models, our Scavenger cloud service can search for
optimum cloud configurations in a black-box, online manner. Qur
approach reduces training times by 2x and costs by more than
50%. Compared to an oracle-based approach, our performance
models are accurate to within 2% such that the search imposes
an overhead of just 10%.

I. INTRODUCTION

The discovery of improved machine learning (ML) models
has resulted in great advances in computer vision, language
and speech processing, scientific computing, and many other
areas. These advances are primarily driven by increasingly
computationally intensive models, such as deep neural net-
works (DNNs), being “trained” on large data sets. The ready
availability of computing resources is a key enabler of machine
learning, and cloud platforms can easily provide these resources.
However, current ML techniques and systems are ill-suited for
making effective and efficient use of cloud resources, i.e., are
not cloud-native.

ML models are often trained on large clusters of cloud virtual
machines, but this often leads to prohibitive costs, because
ML training techniques and frameworks like TensorFlow and
PyTorch are oblivious to cost. Moreover, cloud platforms offer
100s of different virtual machine sizes and configurations
with different cost/performance tradeoffs, making it extremely
challenging to select the “right” type and quantity of cloud
resources. Training large ML models on the cloud is thus
often performed on sub-optimally configured cloud resources,

Prateek Sharma
Indiana University Bloomington, USA
prateeks @iu.edu

leading to cost overruns, slow performance, and underutilized
resources.

These challenges also exist when optimizing the resource
allocation for conventional distributed applications (such as
map-reduce data processing) on the cloud [1]. However, model
training also has other unique execution and synchronization
characteristics and a large array of configuration knobs (such as
number of workers and the batch size) which have significant
impact on performance and resource efficiency.

In this paper, we present Scavenger, a service for optimizing
the cloud training cost and time for ML models. Scavenger is
a model-agnostic, black-box, fully online service built using
TensorFlow, and searches for good configurations for distributed
model training jobs. We use a performance-model guided search
across a multi-dimensional configuration space to find the
pareto-optimal configurations based on user preferences and
constraints. In its search for the best configuration, Scavenger
horizontally scales a training job by adding/removing workers,
and vertically scales it by changing the batch size.

As a key first step towards understanding and optimizing
training time and costs, we develop a new phenomenological
performance model for data-parallel distributed model training.
Its is phenomenological in the sense that our prediction
accuracy improves with the degree of exploration, which is
based on the type of search performed in the search space (§
[). Our model uses both conventional parallel scaling concepts
such as synchronization overheads, as well as fundamental
performance artifacts of Stochastic Gradient Descent (SGD)
based optimization. Unlike in classical parallel applications, we
find that computation performed by parallel workers doesn’t
always compose because of the stochastic nature of the gradient
computation. This statistical inefficiency reduces the rate of
the job’s forward-progress, and imposes its own tradeoff on
time and cost which also depends on the cluster configuration.
We measure and consider this statistical inefficiency by using
SGD noise (variance of gradients), and show how it can be
used as a general scaling indicator.

Scavenger is a fully managed model training service re-
quiring minimal user intervention, prior knowledge, or offline
profiling. We use the repetitive and iterative nature of model
training to briefly profile the job on different configurations and
learn its performance profile by using the scaling indicators.
We minimize the overhead of this exploration and search phase
by using lightweight model checkpointing, and obtain the cost

and time tradeoff curves for different combinations of workers
and batch sizes. The performance model is then used to run
the reminder of the job on the “best” configuration based on
user preferences and constraints.

Our profiling-based strategy of building the performance
model is optimized to reduce the search cost. We can build
a full performance profile of an ML model by profiling on
only a small subset of configurations. We accomplish this by
leveraging our phenomenological first-principles performance
models that can be interpolated using linear regression—thus
requiring only a partial search. Since Scavenger is a cloud
service, it also leverages repeated training of similar models
(e.g., part of hyperparamter or neural architecture search),
and reuses its learned performance model, to completely
eliminate the exploration phase and search costs. Surprisingly,
we find that the SGD noise can serve as model-agnostic scaling
indicator, and even a “universal” average model can estimate
performance with reasonable accuracy without any exploration
or pilot jobs.

To the best of our knowledge, Scavenger is the first work
which can optimize both cost and time in a fully online manner.
We build on recent work for SGD noise based scaling such
as [2]-[5], and use it for simple intuitive phenomenological
models. By considering both the parallel and statistical effi-
ciency, we are able to accurately predict the training time of a
wide range of DNN models with minimal search overhead.

Scavenger is an open-source library built on top of Ten-
sorFlow, and provides a practical, online, black-box, model-
agnostic service for addressing the crucial problem of cost and
performance optimization of distributed machine learning in
the cloud. In addition to the practical significance, we make
the following research contributions:

1) We provide a thorough empirical investigation of the cost
and time tradeoffs in distributed ML model training, and
show how parallel and statistical efficiency influence the
performance.

2) We show how the variance in gradients results in SGD
noise, and how it can serve as a reliable scaling indicator
for elastic horizontal and vertical scaling.

3) We develop new models for predicting the performance
for deep neural networks, which consider both parallel and
statistical efficiency, and the aforementioned SGD noise.
Our models predict training time and cost for different job
configurations (number of workers and batch size), and
construct full tradeoff curves and pareto frontiers, with
very high accuracy of more than 98%.

4) Our models enable us to search for the optimum job
and cluster configuration in a model-agnostic and online
manner, and minimize various combinations of cost
and time. Our techniques can find the “right” cloud
configuration and reduce training time by more than 2x
compared to naive configurations.

II. BACKGROUND AND CHALLENGES

In this section, we describe the performance tradeoffs faced
by distributed ML training. These observations and insights

X B=384 x B=512 x B=768 x B=1024
X
> v\
Ll L
o
@ - N
8 15 R T
S X TR
S
2 X RS
£ N —_ %
S \ ———e %
x 10 \‘———_’i ________ X
4 6 8 10 12 14

Training Time (hrs)

Fig. 1: Running cost and time for different batch sizes and
workers for ResNetl8 training. Each point along a tradeoff-
curve represents 20, 16, 12, 8 workers respectively. Dashed
line shows our model prediction.

guide our performance model presented in the next section.

A. Distributed ML Training

Distributed training entails learning the model parameters
(or weights) of a model over an input training dataset. A
model trains in an iterative-convergent process to minimize a
loss function over the dataset by using optimization techniques
such as Stochastic Gradient Descent (SGD) [[6]] and Mini-Batch
Gradient Descent [7]] or Full Gradient Descent.

Since ML training is highly compute intensive, parallelizing
it using computational accelerators such as GPUs and TPUs,
and through distributed training, is vital [8]], [9]. A common
parallelization approach is data-parallelism, where training is
launched on multiple workers, and each worker learns and
updates the model parameters by processing a small batch of
the training data [10] at each iteration.

After each iteration, the gradient updates from all workers are
aggregated via all-reduce operations to compute the averaged
gradients, update model parameters and synchronize the new
parameters among the workers [[11]. A popular and widely
successful data-parallel training approach is the parameter
server strategy, where the workers compute the gradients, and
parameter servers aggregate and average the gradients from
all workers after every iteration and update the model weights.
Training a popular image recognition model like ResNet [12],
[[13]] or an attention-based language model like Transformer [[14]]
typically require thousands of iterations until the model’s error
converges to the desired low training loss.

Concretely, the training process iteratively computes the
model parameters over K workers, each processing a mini-
batch of b at iteration ¢ and computing the gradient V f(xy ;).
The update rule for the model parameters x is given by:

112
Xep1 =X — 57 Z Vf(%Xkt)s (D
k=1
where 7 is the learning rate, one of the hyperparameters of the
model that is found through empirical search techniques. The
global batch size is B = DK, and is a crucial job parameter.
Elasticity. Distributed training is resource elastic, which means
that the models can be trained on different cluster sizes and
configurations, which can also be changed during runtime
(i.e., during model training). Training can be horizontally

= —
o =

Training time (hrs)

ol 1 1
0 4 8
Memory (GB)

(a) ResNet18

(b) Transformer

2.0

Training Loss
&

20 5 10 15 20
Training Time (hrs)

12 16

(c) ResNet18

Fig. 2: (a) Improvement in training time as cluster size and capacity scales. ResNet18, ResNet50 and Transformer Tiny are
run upto 80% accuracy on CIFAR-10,90% on CIFAR-100 and 15.0 BLEU on WMT14 dataset. (b) Accuracy reached by
Transformer Base before job fails due to memory constraints. (¢) Training time taken by ResNet18 on CIFAR-10 to converge.
Larger B are more time-efficient to achieve the same model quality.

scaled by adjusting the number of workers (i.e., changing K in
Equation [T), and vertically scaled by increasing the mini-batch
size b on each worker. ML frameworks such as TensorFlow
and PyTorch also support model checkpointing, and thus we
can adjust the horizontal and vertical scaling dynamically by
checkpointing the model state and resuming the training on a
different cluster configuration.

This elasticity makes distributed training a good fit for clouds,
since we can easily scale the cluster by adding/removing VMs,
and changing the underlying VM size to increase the batch
size and intra-worker parallelism. Scavenger makes use of
this elasticity in its search for the ideal cloud configuration.
However, distributed training has complex and incompletely-
understood performance tradeoffs [[15] that are affected by the
various SGD parameters (such as K, b). Simply running more
workers and increasing batch size has diminishing returns, as
we can see from Figure [I] which shows the running time and
cost for training the ResNet18 model. Each point corresponds
to a different number of workers for each batch size. We can
see that there are diminishing returns, and thus it is not obvious
which cluster configuration is the “best”.

B. Horizontal Scaling: Adding Workers

The simplest way of scaling a parallel training job is to
add more workers (K). Figure shows the decrease in the
total training time to reach a fixed accuracy level for three
ML models. As the number of workers increases, the training
time reduces, but there are diminishing returns. Increasing the
workers from 4 to 16 (4x) only reduces the training time from
15 to 5 hours (3x).

Thus, ML training shows parallel inefficiency due to the
communication and synchronization overheads. A single model-
training iteration consists of a local gradient computation
step, and a synchronization step where the gradients are
aggregated/averaged. Figure [3] shows the breakdown of this
computation and synchronization. It also shows the overhead of
horizontal scaling in terms of higher synchronization overhead
with increasing workers. Here, the cumulative cluster capacity
is same across various K, i.e., total CPU cores and memory
allocated over all the workers in a cluster is held constant. We
can see that increasing the number of workers increases the
synchronization time. With parameter servers, more workers

means more stragglers, and because bulk synchronous pro-
cessing is used, this increases the communication costs for
everyone. The larger number of workers also increases the work
for the parameter servers, which increases the synchronization
time further. Figure [3] also shows the breakdown for different
batch sizes. We can see that the gradient computation time
also increases with increasing batch sizes.

Memory. The VM’s memory size is also an important resource
for model training. Insufficient memory forces smaller batch
sizes, which reduce the training accuracy and require more
iterations and synchronization during model training. Figure
shows the final model accuracy reached when training the
Transformer model under a strict time deadline. The smaller
VMs provide insufficient accuracy, and below a 4GB threshold,
the system (TensorFlow) crashes and makes no forward
progress at all.

C. Vertical Scaling: Increasing Batch Size

One way to reduce the synchronization overheads is to
increase the batch size, which reduces the total number of
iterations required and increases the parallel efficiency. This
is illustrated in Figure which shows the training-loss for
different batch sizes for the ResNet18 model. Larger batch sizes
(1024) achieve lower (i.e., better) loss compared to smaller
ones. This is also seen for other models in Figure [which
shows the training time to desired accuracy for K = 16.

The gains of compute efficiency with larger B is evident
from Fig. [5] where the throughput (i.e., the number of samples
processed per second in the training phase) increases as
the global batch size increases, then saturates after a knee-
point/inflection point. The throughput plateaus after a certain
batch size since the CPU utilization of the workers maxes out
after the inflection point. In the results shown, the workers
used in the cluster are GCP E2-standard VMs with 4 vCPUs
and 16 GB memory.

D. Statistical inefficiency

In both horizontal and vertical scaling, parallel training
does not scale linearly. The fundamental reason for this non-
linear scaling is that not all computing work is effective
because of stochastic gradient descent. In conventional parallel
applications, all work performed by all workers is equally
useful. However, with stochastic gradient descent, the work

B Sync Time

Il Compute Time I Sync Time

EEE Compute Time BN Sync Time EEM Compute Time

(a) ResNet18

(b) ResNet50

6.0 <
< E

8 12
K

(c) Transformer Base

Fig. 3: The gradient computation and synchronization time breakdown for various ML workloads across multiple K and trained
on various B. Weak-scaling scenario: the cumulative cluster capacity is same across all K, and the worker VM size is varied.

ResNet18 ResNet50 Transformer Base

70

65

Train Time (hrs)

60

100 600 800 1000 100 600 800 1000 500 750 1000 1250
B B B

Fig. 4: Training time to convergence for various global batches
on K = 16. ResNet18, ResNet50 and Transformer are trained
to 80%, 90% accuracy and 18.0 BLEU score respectively.

ResNet18 ResNet50

260 260

Transformer Base

500 240 250

240

Throughput (samples/sec)

200 230
500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000
B B B

Fig. 5: Throughput of various models on increasing the global
batch size B for K = 16. The throughput increases as we
increase B upto a certain point, then plateaus.

done by the workers (i.e., the gradients computed) does not
fully compose. That is, the total forward progress made (i.e.,
the decrease in training loss) is not equal to the sum of
progress made by the individual workers. We call this the
statistical inefficiency of parallel model training, and it reflects
how “aligned” the computed gradients of the different workers
are. This statistical inefficiency is a fundamental attribute of
SGD (and all optimization algorithms in the SGD family like
Adam [16] etc). The statistical inefficiency can be captured
by computing the SGD noise, which is the variance in the
gradients among the workers [2], [3[]. We use a similar variance
formulation in our model described in the next section.

Thus adding more workers (increasing K) can increase
the divergence between gradients and require more training
iterations and increase the overall training time. Similarly, a
small batch size means that the gradients are computed on
a small subset of data, and are more likely to differ from
each other. Thus, larger batch sizes are preferable from a
statistical efficiency perspective, but have other tradeoffs: they
impose additional memory requirements and communication
overheads. Furthermore, increasing batch sizes may have
diminishing returns (Figure [B). Because of gradient noise and
statistical inefficiency, throughput (number of training data
samples processed per second) is not sufficient to capture the
performance, and we need to consider the wall-clock time to
reach the desired accuracy level.

Our performance model is able to capture both the statistical

and parallel efficiency associated with different horizontal and
vertical scaling configurations, and provide accurate estimates
of training time for different configurations which can be used
to select the “best” configuration.

III. DESIGN

At a high level, our goal is to find the “best” cloud
cluster configuration for a model training job, with minimal
information about the ML model, and in an online manner
with minimal apriori profiling. We want to minimize the time
and cost of training a model to a specified accuracy level.

For optimizing the job configuration for a given ML training
job, we first develop an analytical performance model for
estimating the total training time (and cost). This performance
model is used to compute the time vs. cost tradeoff curves
for a job, which can be used to select the “right” cloud
cluster based on user preferences and constraints. Our focus is
on building simple, practical, and generalizable performance
models that do not require offline training, and which can
be refined and used with online profiling. Predicting the total
training time of ML training is especially challenging due
to the statistical inefficiency of distributed SGD. To address
this challenge, we investigate and use general SGD noise
indicators, that serve as a proxy for statistical inefficiency
(Section [[TI-A). Using these scaling indicators, we develop an
analytical statistical performance model, which we combine
with a more conventional parallel performance model. Finally
in Section [[II-El we describe how the combined parallel and
statistical performance model can be obtained and used in
practice.

A. SGD Noise as a Scaling Indicator

We have seen that simply adding more resources to a
distributed training job doesn’t decrease the training time
uniformly. This inefficiency is crucial in cloud environments,
since it increases costs without proportional decrease in training
time. We seek a general “scaling indicator” which serves as a
proxy for the overall parallel efficiency. For example, such a
scaling indicator should indicate the scenarios in which adding
more resources would not decrease training time, and we should
stop scaling. Because we want online cluster optimization, this
scaling indicator should also be easily computable at run-time,
and be independent of the ML model and cluster size.

For classic parallel applications, the communication and
synchronization overheads typically serve as scaling indicators.

ResNet18

— k=8
121 — K=12 12 12
— K=16

ResNet50 Transformer Base

Noise
%
0
0

50000
Training Steps

0 5000 0 5000 0
Training Steps Training Steps

Fig. 6: The SGD noise requires some iterations to stabilize,
after which it is dominated by the number of workers.

For example, we can compute the scaling efficiency as the
fraction of time spent in communication, and stop scaling if
this fraction increases above a threshold. Amdahl’s law and
other parallel scaling laws can then use these communication
overheads and inform us about the performance and scaling
properties of the application. Communication and synchroniza-
tion overheads are also applicable for ML training and can be
used to model their parallel efficiency. However, they are not
sufficient, because of the statistical inefficiency of parallel ML
training.

Just as communication overheads can indicate parallel
scaling in conventional parallel applications, are there similar
scaling indicators for statistical inefficiency? We seek a general
indicator for statistical efficiency that is independent of the
model and the execution environment (number and type of
workers, etc.). For example, such a scaling signal could indicate
the batch size threshold for a given cluster size, beyond which
scaling the application does not significantly reduce the training
time.

Fundamentally, the statistical inefficiency arises because of
the noise in the gradients computed by the workers. Our main
observation is that the SGD noise can be captured by the
variance in the gradients computed by the workers, and this
serves as a useful general statistical inefficiency indicator. This
variance/noise can be computed by:

1 k
El= S [197]2]
() = —E :
E[[[g:]%]
(k)

where ¢,/ is gradient computed on worker £ at iteration ¢
and g, is the aggregated gradient norm obtained by reducing
gradients on the parameter servers in a cluster with K
workers. This SGD gradient variance has been investigated
previously [2]], [3] to understand either batch size scaling or
worker scaling, and we generalize it to both types of scaling.

The noise, which is essentially the deviation in the calculated
gradients from the “true” gradient, is also a practical scaling
indicator. It can be easily computed in the data-parallel
parameter server strategy during the model training, i.e., in an
online manner. The per-worker and aggregated gradients are
collected from all workers and parameter servers respectively.
Thus, from equation 2} we can compute the gradient noise by
computing the ratio of the mean of the workers’ local gradient
norms and the aggregated gradient norm.

In the early training stages, the variance in the gradients is on
the same scale as the gradients itself and thus the initial noise
is low (Figure [6). As the ML model converges, the gradients
approach towards the true gradient, increasing the noise before

2

ResNet18 ResNet50 Transformer Base

Normalized Noise

0.80
10 12 14 10 50 60 70 70
Training Time (hrs) Training Time (hrs)

80 90 100
Training Time (hrs)

Fig. 7: The normalized SGD noise directly impacts the total
training time for different batch sizes and models. ResNet8,
ResNet50 and Transformer are trained to 80%, 90% accuracy
and 18.0 BLEU score respectively.

finally saturating to the number of workers K. Since we want
to compare the noise for different K, we normalize it by K,
so that it is a true statistical efficiency indicator.

We have observed that the noise is not constant over

the course of training, even with a static job configuration.
Instead, the noise increases and then stabilizes, as we can see
from Figure [6] This is a fundamental artifact of SGD-based
optimization, and applicable for all models and configurations.
The noise is also affected by the SGD learning rate, and
we need to account for the learning-rate schedule. For our
cluster optimization, we want to search and select for the right
cluster configuration as quickly as possible after the training
commences. However since the noise from early training epochs
is unreliable, we let the noise stabilize before using it as a
scaling indicator. When a job starts, we run it on the starting
configuration until the noise stabilizes, and then begin the
exploration/search process. This increases the overall profiling
and search time, since the early iterations are the “cold start”,
but provides reliable noise estimates.
How effective is SGD noise in predicting performance? Figure[7]
shows the total training time to the desired accuracy vs. the
SGD noise for different global batch sizes B. For all the three
ML models, the increase in noise leads to an increase in training
time. We also observe that smaller batches have higher noise.
Thus, the SGD noise can serve as a good indicator of the
training time and efficiency. We investigate a deeper relation of
noise with statistical efficiency in the our performance model
developed in the rest of this section.

B. Performance and Cost Model

We develop an analytical model for the total training time
and cost of distributed ML training, which creates the tradeoff
curves (like in Figure [I), and guides the cloud resource
allocation policies. Our performance models use statistical and
parallel scaling indicators which can be obtained by profiling
in an online manner during job execution, and do not need
a-priori offline profiling. The job’s performance depends on
its configuration, which consists of the number of parallel
workers, K, and the total batch size B, and our model predicts
the performance for each combination of these configuration
parameters. ML training is an iterative process, and the total
training time, 7":

3)

where n; is the number of iterations required to reach the
specified model accuracy, and 7 is the per-iteration time. The

T =n,T,

number of iterations depends on the total number of training
epochs e:

“4)

where D is the fixed dataset size, and B is the global batch
size, an important job configuration parameter. The number
of epochs to reach the desired model accuracy e, is the key
unknown, and depends on many factors such as the model size,
complexity, and desired accuracy, and the statistical inefficiency.

The other key parameter in Equation [3]is 7, which is the per-
iteration time. For a given job configuration, i.e., fixed (K, B),
the time to process a mini-batch is roughly constant over the
course of training, because the same gradient computation
and communication steps are being performed on the same
mini-batch of identically distributed data.

Finally, the total cost is simply the product of training time,
the number of workers K, and the per-VM price p:

C=TKp)

We estimate the number of epochs, e using our statistical
performance model described in the next subsection. The time
per iteration 7, will be estimated using our parallel performance
model in Section
Online Profiling and Searching. Using the model, we first
obtain the tradeoff curves in our search or exploration phase. In
the search phase, we briefly run the job on some configuration,
observe its parallel and statistical scaling indicators, and
estimate the time (and thus cost) on that configuration. Only
a small number of iterations (around 20) are usually required
for estimating the performance of a given configuration, after
which we checkpoint the model, and run the job on a different
configuration. This exploration of the various configurations
allows us to obtain the full time and cost curves.

Note that due to checkpointing, there is no lost work.
The search cost is running the job briefly on suboptimal
configurations, and the small overhead of restoring the model
from checkpointed weights. Selecting the next configuration
in the exploration phase is done using grid search guided by
the optimization criteria and constraints on K and B. We refer
to this as a full or offline search, since we first explore the
configuration space, and then run the reminder of the job on
the best configuration.

To reduce the search cost, our phenomenological statistical
and parallel performance model also allows us to estimate
the running time on configurations without even profiling
on them. That is, we can obtain estimates of T by profiling
on only a small sample of K, B configurations, and use our
phenomological models to build the rest of the tradeoff curve
by fitting the learned the performance models. This partial or
online search reduces the search cost significantly. However,
the drawback is that the estimates of running time due to
the interpolation/regression can be error-prone, and thus the
tradeoff curves obtained using the online search can differ
slightly from the offline search.

Finally, we observe that many jobs train nearly identical
models as part of hyperparamter tuning, neural architecture

search, etc. For example, the hyperparamter tuning may involve
dozens of jobs that train the same model, but with different
activation functions, weight decay, regularization, etc. In such
cases, the parallel and statistical efficiency of the job doesn’t
significantly change. Thus, once a job’s performance model is
learnt, it can be stored and reused when the same or similar
model is trained in the future. We can thus avoid the exploratory
search phase entirely, and this is the no-search scenario. We
develop full, partial, and no-search techniques for both the
statistical and parallel performance models.

C. Statistical Performance Model

The SGD noise scaling indicator allows us to model the
statistical performance and the number of epochs required for
achieving the desired accuracy level. The SGD noise increases
the total amount of work required, and hence the number of
iterations and epochs. For a given job configuration (K, B),
the number of epochs e is proportional to the SGD noise 7 :

e X, (6)
Empirical support for this can be seen in Figure [§] which shows
the normalized noise plotted against epochs taken to reach a
specific performance target across various K and for different
target accuracy levels.

This linear model can be understood in relation to full

gradient descent, which has no noise, and the minimal number
of epochs e*. Thus for SGD, for a given B, we have e = e*+6~,
where 0 is the unknown linear-model parameter which relates
the noise to the statistical efficiency.
Full offline search. We profile the model on each (K, B)
configuration, and measure the noise vk, p. Note that we are
primarily interested in the relative performance of various
configurations. Both e*, 6 are properties of the model and not
affected by K, B. We can obtain them from prior profiling
runs like those shown in Figure [§] From the figure, we can see
that the epochs required to reach different accuracy levels is
not sensitive to the number of workers. In fact, this is a static
property of the ML model itself, and not influenced by any job
configuration parameter. Thus, if we have access to any single
prior execution of the model (under any configuration, and even
without profiling), then we can estimate the epochs required
to reach any desired accuracy level. In many cases however,
we only need to compare the relative performance between
different configurations, for which we do not need any prior
execution log, and can compare the epochs of configurations
based on their observed noise.

The above full search technique already provides significant
new capabilities for statistical efficiency modeling. We refine
it with two more powerful insights that reduce the search cost
associated with the statistical efficiency model further.
Partial Search. While the linear relation between noise and
epochs is extremely powerful, we can enhance it even further
to model the statistical efficiency using partial search without
exploring the entire configuration space. First, we develop a

ResNet18

&

ResNet50

Transformer Base

0.88

=

=1
)

0.84

Normalized Noise

2

0.92
0.86
i 0.88

0.84

0.82
180 200 220 150

Epochs to Accuracy

Epochs to Accuracy

- — 0.80
500 550 13 14 15

Epochs to Accuracy

Fig. 8: The number of epochs required to reach various accuracy levels is linear in the normalized SGD noise.

finer-grained model for noise, which allows us to relate it to

the batch size. 1

YK,B X \/E
This allows us to estimate the noise on different batch sizes
without even requiring profiling, we can profile and find the
noise on a small number of different B values in the search
phase, and build a linear model of v, B, and use it to interpolate
the noise for the rest of the unseen values of B. This relation
between 7, /B is derived from the theoretical properties of
SGD described in [3]. We empirically show it in Figure [9]
which shows the linear relation between noise and % for
different ML models.

Our partial search is performed by running the job briefly
on the extreme points of B, i.e., on the smallest and largest
batch size provided by the user, and then fitting a model to
Equation

For enhanced accuracy, we can repeat the process for

different values of K. We have found that it is possible to
avoid this per-K profiling and instead use a general/average
model for noise and B. Surprisingly, the relation between noise
and batch size is not very sensitive to the number of workers K.
Thus, we can simplify statistical efficiency model even further,
by using an average model for noise vs. B. This average model
is also shown in Figure [9] (by the solid line). For a given B,
we average the (estimated) noise for various K values. With
this averaging, using only the batch size, we can predict the
noise, and thus the number of epochs.
No-search. If the same or similar ML model is being trained
repeatedly, then we can use its noise vs. B relation, and
do not need any further profiling for modeling its statistical
performance.

)

D. Parallel Performance Model

The above statistical performance model provides us the
estimate of the number of epochs/iterations required. We now
tackle the relatively simpler task of modeling the per-iteration
time, using more conventional parallel performance techniques.
Our key insight is that ML training is highly repetitive and the
performance characteristics of each iteration within a job are
nearly identical. This allows us to continue using the profiling
based search strategy. Thus the full-search for the parallel
performance model simply runs the job for a small number of
iterations on all the job configurations of interest.
Partial-search. For the partial search, we again use a phe-
nomological model for iteration time and use an interpolation
approach. Each iteration entails computing the gradients,

collecting and averaging them, and then synchronizing them
between workers via the parameter server. Both these major

components can be modeled as follows:
T = compute_time + sync_time.

®)

The gradient computation time on a worker depends on the
mini-batch size, b:

©))

The synchronization time is influenced by number of parallel
workers:

compute_time o b.

sync_time x K (10)

Using these relations, we can build a model for the per-
iteration time 7 by profiling on the extreme points in the
(K, B) configuration space, and then fitting linear models for
the computation and synchronization.

No-search. In case of repeated model training, since the
computation and synchronization costs do not change, we can
reuse the performance model from identical/similar models,
and avoid the search phase altogether.

E. Resource allocation policies

We combine the statistical and parallel performance model
for our job configuration and cloud resource allocation policies.
We first build the time/cost tradeoff curves using the profiling
and modeling. Depending on the prior information available,
the search strategy and costs may differ. We have built our
system as a service, so future jobs training similar models can
be significantly sped-up using their stored performance models
and using the partial or no-search policies.

The job configuration search is ultimately determined by
the user’s objective and constraints. We support optimizing
for time, cost, and also a knee-point based optimization that
selects the knee-point of the cost/time curves. We determine
the knee of the curve using the kneedle [[17] algorithm.

Constraints on the maximum cost and time are provided by
the user. This bounds the search space and is also practical.
These constraints thus also impose a constraint on the number
of worker VMs (K), and yield K, and Kp,x. The bounds
on the batch size are determined by the memory-size of the
VM, yielding Bax. Small batch sizes result in extremely high
noise, and thus realistic lower-bounds on B are necessary.

IV. IMPLEMENTATION

Scavenger is implemented as a modular extension to Tensor-
Flow, and written in Python in about 2000 lines of code. The
training scalability indicators are implemented by extending

ResNet18

ResNet50

Transformer Base

-
ot

Normalized Noise

0.90

0.85 %= K =12
%= K =16

- —®— our model

0.80 <

0.04 0.05

0.04 0.05

0.030 0.035

1/VB

0.040 0.045

Fig. 9: The noise for each (K, B) config at 80%, 90% train accuracy and 18.0 BLEU for ResNet18, ResNet50 and Transformer
Base. The normalized noise is not very sensitive to K, and our average noise model can estimate noise for any (K, B)

configuration with low error.

TensorFlow’s estimator framework [18]]. Users simply need to
download our TensorFlow distribution (or apply a patch), and
no modifications are required to the models or any workflow
component. The parameter server computes the SGD noise by
computing the gradient norms for all the workers’ updates, and
the final norm for the averaged gradient. This approximates the
gradient variance, as shown in [2]. The gradient variance can
be noisy, and we use exponentially weighted moving average
to smoothen the output.

All the scaling indicators: the gradient noise, gradient
computation time, and synchronization time, are sent to an
external model service on every iteration. The model service
uses these scaling indicators to update the performance model
if operating in the initial exploratory search mode. The user
can select the full or partial search mode based on the search-
cost and performance-model prediction accuracy requirements.
By default, we use the partial-search, since its results are
comparable to full-search with lower search costs. Scavenger
saves all performance models on persistent storage, and the
no-search strategy is used if a model has been trained before.
Once the tradeoff curves are constructed, we select the best
configuration and stop all profiling.

We interface with standard cloud APIs for managing VMs.
Our partial-search process starts with the smallest K, B
configuration, and then adds more VMs to the cluster to reach
the largest configuration. We use lightweight checkpointing:
since the parameter server stores the latest model weights, the
new workers in a new configuration pull the latest weights
from the parameter server and resume training. We switch to
different configurations only on iteration boundaries, and thus
no work is lost. The existing VMs are always reused, to avoid
excessive VM churn and startup/shutdown overheads. Although
Scavenger is currently implemented in TensorFlow v1.5, its
main components are modular, and need only minimial profiling
information from the ML framework. Supporting PyTorch is
part of our ongoing work.

V. EXPERIMENTAL EVALUATION

We use popular deep learning models: two residual networks
and one attention-based transformer, and evaluate across
different VM size and price configurations from the Google
Cloud Platform (GCP). Our experimental evaluation is focused
on answering the following questions: 1. How effective is
gradient noise as an indicator of statistical efficiency? 2. How
accurate is our performance and cost model across different job

configurations? 3. What are the performance and cost tradeoffs
for different cloud computing cost models? 4. What are the
time and cost savings achievable with our job configuration
and resource allocation policies?

While most work on model training uses GPUs, we perform
all evaluation on CPU VMs. GPUs simply reduce the per-
iteration time, and all aspects of Scavenger such as the
model and service are unaffected by the underlying hardware
parallelism. Standard CPU VMs can also be sized in a
fine-grained manner and we can configure the VM with
arbitrary amounts of CPUs and memory. This allows us to
also evaluate weak scaling: the total computing resources
across all our cluster configurations are the same, but they
are distributed among VMs differently. In contrast, GPUs have
fixed and limited memory, and severely limit weak-scaling
and batch-size scaling. Furthermore, we only consider the
worker cost, and assume that sufficient parameter servers are
launched and available. Parameter server allocation is tackled
by other systems such as Optimus [[19], and is orthogonal and
complementary to our work.

A. Cost and time tradeoffs

With the performance model described in Section we
can predict running cost and time for distributed training for
various cluster configurations. Figure shows the cost vs.
time trade-offs for ResNet18, ResNet50 and Transformer Base
to reach 80%,90% train accuracy and 18.0 BLEU score for
various B on Google E2-standard-4 VMs. Each scatter point
show results from full runs for each (K, B) configuration
and dashed line shows the predicted cost and time with the
offline performance model. The rental cost of each worker is
$0.13402/hr. Each point on the curve represents a decreasing
cluster size, with [20, 16, 12, 8] workers.

We can see that there are clear cost vs. time tradeoffs for
each batch size. Here, the per-worker compute hardware is the
same, and the per-hour total cluster-price is also proportional
to K. The largest clusters have highest cost but also lowest
running time. Decreasing workers reduces cost slightly but
significantly increases running time.

Both the ResNet models (Figures have a single
inflection/knee-point for all batch sizes, after which we see
diminishing returns on cost. For ResNet-18 B=384, K=16
represents ideal configuration since it corresponds to the
knee-point. For B=512, inflection point corresponds to K=12
so that is the ideal configuration at this batcgh-size. With

x B=384 x B=512 x B=768 x B=1024 X B=384 x B=512 x B=768 x B=1024 x B=1280 x B=1024 x B=T768 x B=512
x N —~175

s iy 80 . 17 Ry
e X\ D S " e
= o I
v e N 173 == |7 -
815 Voo 38 Ay S 1!
S X, - S N S 101
o0 x N T a0 N S e X . & x
£ \ i £ 601 T e x £125
c ¢ x X c x “‘“‘ == c ~,
2 101N TS x E LRNE E x
« e x 100

4 6 8 10 12 M 20 40 60 60 80 100

Training Time (hrs)
(a) ResNet18

Training Time (hrs)
(b) ResNet50

Training Time (hrs)
(c) Transformer Base

Fig. 10: Cost-Time trade-offs for ResNet18, ResNet50 and Transformer Base to reach 80%,90% train accuracy and 18.0 BLEU
score for various B on Google E2-standard-4 VMs. The rental cost of each worker is fixed (= $0.13402/hr). We show the
trade-offs between running cost and time for a given B across decreasing cluster-sizes [20, 16, 12, 8]. Dashed line shows the

cost predicted by our full-search performance model.

Transformer model in Figure we observe two inflection
points corresponding to clusters 12 and 16 for any B. We
observed a notable decrease in iteration time from K 12 to 16
since for the same per-worker compute hardware and B, since
larger K implies smaller worker mini-batch size. For example,
B = 768 changes mini-batch size from 64 to 48 when K
goes from 12 to 16. Thus, we see a significant training time
difference between K = 12 vs. 16, resulting in two distinct
inflection points.

Result: The tradeoff curves can be a crucial tool for judicious
resource allocation on the cloud for distributed training.

The dashed lines in Figure [[0]shows the cost predicted by our
performance model using the full-search strategy, which relies
on profiling of the gradient noise and iteration-time performance
models by running the model on different configurations for a
small number of iterations. Compared to the actual job running
time, our offline performance model has an error of only 1-5%,
across the entire range of models, workers, and batch sizes.

B. Partial Search

We now evaluate the effectiveness of our partial search
statistical and parallel performance model. In the partial
search strategy, we only profile the job on a small number of
configurations (and only for a few iterations). We then use the
phenomenological models and linear regression for estimating
the job running time for the other configurations.

For our evaluation, we set 8 < K < 20 and 384 < B <
1024. In case of Transformers, we set Byyin, Bmaz to 512 and
1280. We increment K by 4 to compare results with offline
runs from Figure [10} so we use K € [8,12, 16, 20].

The starting configurations are (Kin, Bmin) and
(Kmin, Bmaz), until the gradient noise has stabilized. With
exponential moving average smoothing, noise for ResNet18,
ResNet50 and Transformer Base stabilized at 2K,3K and
10K iterations respectively. The total search cost for ResNet
18, arising from doing this profiling on extreme configurations
was minimal. The overhead of exploring a new configuration
(due to checkpoint-restore) is minimal, on average 37
seconds for ResNetl8, 40 for ResNet50, and 127 seconds
for Transformers. Each configuration is run for around 20
iterations, which takes around 17-35 seconds for our three
models. Compared to an “oracle” scenario of running on the

optimal configuration all along (bypassing the search phase),
our approach increases running time by 0.83 hours, and $0.89
to the final cost. This represents a 13% increase in running
time and 9% increase in cost, compared to an oracle approach
which runs the job on the optimal configuration from the
start. Compared to arbitrary job configuration without our
techniques, our running times can be more than 2x lower and
costs can be more than 40% lower.

Result: The partial search increases job running time by 13%
and cost by 9%, even compared to an oracle approach, and is
a low-overhead strategy for discovering optimal configurations.

C. Model Accuracy

Both the full and partial search are able to accurately predict
the total training time, as seen from Figure [IT] We evaluate
three configurations: partial search (red), full search (green),
and a worst-case no-search strategy. The figure shows the
distribution of the error of running time prediction vs. the
empirical job running time, across different K and B. We see
that the average error for partial search is 4% for ResNet
and less than 2% for Transformer. The full-search is even
better: with an average error of 0.5-3.5% across all models
and configurations.

In Figure [IT] we also evaluate our no-search strategy in
a worst-case scenario. The no-search strategy performance is
exactly the same as the full-search scenario, if a near-identical
ML model has been trained before. However we construct
a scenario where a “global average” performance model is
used which averages the statistical and performance models
over all the three ML models. Thus we are using a “universal”
performance model. Even this universal global-average model
shows acceptable training-time prediction: the error is in the
range of 4-20%. Note that this global-average model does not
require any search, has no search costs, nor does it require any
prior profiling or pilot runs. It is thus fully online and zero
overhead.

Finally, we note that the running-time prediction error is
not highly significant to our overall objective of discovering
optimal configurations. We primarily care about the relative
running times, because we only compare configurations and
run the job on the best-predicted configuration. It is likely that
the best-predicted configuration remains the same even with

W Partial e Full

M Universal ML model

20

= o
o o

—
NS

=~ oo N

i

% Error
% Error

k

2

g2

% Error
R
o e 3

N

om &

8 12

K

16

(a) ResNetl8

12
K

(b) ResNet50

16 8 12 16

K

(c) Transformer Base

Fig. 11: Error in predicted training time from actual training time across all job configurations. The error for partial and full
search is low. Even the universal model, which doesn’t consider any model-specific details, provides acceptable results.

the higher error, or the sub-optimal configuration chosen due
to the errors is very close to the optimal configuration in the
trade-off curve.

Result: Our performance model can predict training times
with a low error of 0.5-3.5%, and only 4% even with partial
searching. In the fully-online setting, the error range is 4—20%.

D. Memory-based pricing

The cost of training is ultimately determined by the VM
cost model. So far, we have looked at conventional on-demand
VM pricing, where the VM cost scales linearly according to
the number of vCPUs. Scavenger can work with different cost
models. We consider VMs that are priced both per CPU and
also per GB of memory. Google cloud’s custom-sized VMs
approximate this model.

With such a finer-grained cost model, the cost-time tradeoff
curves are shown in Figure [I2] In this case, the VM memory
is allocated according to the batch size such that there is
negligible free memory. The cost is proportional to the total
memory required (the global batch size B) and running time.

Comparing the results in Fig. [T0] and we see a shift in
the inflection points for all ML workloads. This is expected
since the running costs changed as a cluster K training on
B = 1024 will be pricier than that running B = 384, as more
memory would be allocated to the former.

VI. RELATED WORK

Our work falls in the category of adapting model training
on distributed infrastructure such as shared clusters and cloud
platforms [20]. Scavenger uses the noise scale proposed in
AdaScale SGD [2]], which is similar to the gradient noise model
of McCandlish et.al [3[]. KungFu [4] and Pollux [5] also use
this gradient noise metric for monitoring training performance
and dynamically adjusting the resource allocation to minimize
it. In addition to elasticity and adaptation mechanisms proposed
in these papers, we use a performance profiling based approach
that also takes cost into account. KungFu is complementary to
our work: we can implement Scavenger’s policies as part of
their adaptation-policy framework and mechanisms. Pollux also
considers statistical efficiency and similar worker and batch-
size tradeoffs, but is not cloud cost aware, and instead provides
scheduling policies for shared clusters. BFTrainer [21]] attempts
to utilize idle nodes for distributed training dynamically using a

10

mixed integer linear programming (MILP) resource allocation
algorithm.

Commercial offerings of “model training as a service”,
such as Amazon AWS SageMaker [22], use only rudimentary
performance models, and do not use statistical efficiency
or pareto-optimal allocation. Searching for hyperparamters
is an important cloud workload, and reducing this search
cost using parallel search techniques and early stopping
provide significant cost and time savings [23]-[25[]]. Unlike
hyperparamter optimization which focuses on reducing the cost
of a “bag” of jobs, Scavenger focuses on optimizing the cost
and time of a single job. Efficient elasticity mechanisms and
policies for ML training [26]—[28]] can also be incorporated
into Scavenger.

Scheduling and resource allocation in shared clusters is
challenging for distributed training because of the complex per-
formance tradeoffs we have identified, and the large computing
requirements. In shared private clusters, optimizing the use of
limited GPU resources is a key challenge [29]—[32]. In cloud
platforms, resource contention is not an issue, but instead cost
optimization is important.

Modeling distributed ML training poses many challenges
because of the heterogeneity of ML models and their perfor-
mance tradeoffs [33]]. Optimus [19] models the throughput and
communication costs to allocate workers and parameter servers
to jobs on a shared kubernetes cluster. Cynthia [34] minimizes
cloud cost and time by scaling workers and parameter servers
using a finer-grained analytical model, but does not consider
batch sizes and statistical efficiency. We do not adjust the
number of parameter servers and assume that they are suitably
provisioned. Optimizing parameter server allocation is part of
our future work. Batch-size adaptation can be important for
model generalizability and performance, and can benefit from
second-order gradient information [35].

VII. CONCLUSION

The training time and cost for large machine learning models
is significant, and sensitive to many job and cloud configuration
parameters. Scavenger is a cloud service which uses online
profiling and new performance models for estimating the
training performance on different cloud configurations, with
high accuracy of over 95%, and reduces training time by 2x.

Fig. 12: Scavenger can work with different VM pricing models. In this figure,

X K=12 x K=16 x K=20 x K= x K=12 x K=16 x K=20 x K=8 X K=12 x K=16 x K=20
X B o~ '
N s 45K % RNg £ 120K XY
X, & > g \
N 2 N “ g x X
k4 Nl S 30K N “x E N S
x T AN Il I B IR N Fe
RN S W X% N IS EEES Ay
xe ¥ ~ X X AN X
Teees ~~x X AN ~-X X o Rean
‘X‘x;(\x Qs S X [40K AL
1 6 8 0 12 u 0 3 40 50 6 10 5 60 70 80 9 100
Training Time (hrs) Training Time (hrs) Training Time (hrs)

(a) ResNetl8

resulting in different cost/time tradeoffs.

[1]

[2]

[3

[t}

[4]

[5]

[6

=

[7]
[8]
[9]

[10]

(11]

[12]

[13]
[14]

[15]

[16]

(17]

(18]

[19]

REFERENCES

O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and
M. Zhang, “{CherryPick}: Adaptively unearthing the best cloud configu-
rations for big data analytics,” in 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), 2017, pp. 469—482.

T. B. Johnson, P. Agrawal, H. Gu, and C. Guestrin, “Adascale sgd: A
user-friendly algorithm for distributed training,” 2020.

S. McCandlish, J. Kaplan, D. Amodei, and O. D. Team, “An empirical
model of large-batch training,” arXiv 1812.06162, 2018.

L. Mai, G. Li, M. Wagenlidnder, K. Fertakis, A.-O. Brabete, and
P. Pietzuch, “KungFu: Making Training in Distributed Machine Learning
Adaptive,” USENIX Symposium on Operating Systems Design and
Implementation, p. 19, 2020.

A. Qiao, S. K. Choe, S. J. Subramanya, W. Neiswanger, Q. Ho, H. Zhang,
G. R. Ganger, and E. P. Xing, “Pollux: Co-adaptive cluster scheduling
for goodput-optimized deep learning,” 15th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 21), 2021.

L. Bottou, “Large-scale machine learning with stochastic gradient descent,
in COMPSTAT 2010, pp. 177-186.

S. Ruder, “An overview of gradient descent optimization algorithms,”
Arxiv 1609.04747, 2017.

T. Ben-Nun and T. Hoefler, “Demystifying Parallel and Distributed Deep
Learning: An In-Depth Concurrency Analysis,” arXiv:1802.09941 [cs].
R. Mayer and H.-A. Jacobsen, “Scalable Deep Learning on Dis-
tributed Infrastructures: Challenges, Techniques and Tools,” 2019, arXiv:
1903.11314.

J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ranzato,
A. Senior, P. Tucker, K. Yang et al., “Large scale distributed deep
networks,” in NIPS ’12, pp. 1223-1231.

M. Li, “Scaling Distributed Machine Learning with the Parameter Server,”
in ACM BigDataScience ’14, pp. 1-1.

C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
31st AAAI ’17.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2017.

S. Gupta, W. Zhang, and F. Wang, “Model Accuracy and Runtime Trade-
off in Distributed Deep Learning:A Systematic Study,” arXiv:1509.04210,
2016.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
ICLR, 2015.

V. Satopaa, J. Albrecht, D. Irwin, and B. Raghavan, “Finding a "kneedle"
in a haystack: Detecting knee points in system behavior,” in 2011 31st
International Conference on Distributed Computing Systems Workshops,
2011, pp. 166-171.

H.-T. Cheng, Z. Haque, L. Hong, M. Ispir, C. Mewald, 1. Polosukhin,
G. Roumpos, D. Sculley, J. Smith, D. Soergel et al., “Tensorflow
estimators: Managing simplicity vs. flexibility in high-level machine
learning frameworks,” in ACM SIGKDD 2017, pp. 1763-1771.

Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: an
efficient dynamic resource scheduler for deep learning clusters,” in
Proceedings of the Thirteenth EuroSys Conference on - EuroSys ’I8.
Porto, Portugal: ACM Press, 2018, pp. 1-14. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3190508.3190517

2

11

(b) ResNet50

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

(c) Transformer Base

VMs are priced based on their memory size,

R. Mayer and H.-A. Jacobsen, “Scalable deep learning on distributed
infrastructures: Challenges, techniques, and tools,” ACM Computing
Surveys (CSUR), vol. 53, no. 1, pp. 1-37, 2020.

Z. Liu, R. Kettimuthu, M. E. Papka, and I. Foster, “Bftrainer: Low-cost
training of neural networks on unfillable supercomputer nodes,” 2021.
[Online]. Available: https://arxiv.org/abs/2106.12091

E. Liberty, Z. Karnin, B. Xiang, L. Rouesnel, B. Coskun, R. Nallapati,
J. Delgado, A. Sadoughi, Y. Astashonok, P. Das et al., “Elastic machine
learning algorithms in amazon sagemaker,” in Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data, 2020,
pp. 731-737.

L. Dunlap, K. Kandasamy, U. Misra, R. Liaw, M. Jordan, I. Stoica,
and J. E. Gonzalez, “Elastic hyperparameter tuning on the cloud,” in
Proceedings of the ACM Symposium on Cloud Computing, 2021, pp.
33-46.

R. Liaw, R. Bhardwaj, L. Dunlap, Y. Zou, J. E. Gonzalez, I. Stoica, and
A. Tumanov, “HyperSched: Dynamic Resource Reallocation for Model
Development on a Deadline,” in Proceedings of the ACM Symposium on
Cloud Computing. Santa Cruz CA USA: ACM, Nov. 2019, pp. 61-73.
[Online]. Available: https://dl.acm.org/doi/10.1145/3357223.3362719
U. Misra, R. Liaw, L. Dunlap, R. Bhardwaj, K. Kandasamy, J. E.
Gonzalez, I. Stoica, and A. Tumanov, “Rubberband: cloud-based hyper-
parameter tuning,” in Proceedings of the Sixteenth European Conference
on Computer Systems, 2021, pp. 327-342.

M. Li, W. Xiao, B. Sun, H. Zhao, H. Yang, S. Ren, Z. Luan, X. Jia,
Y. Liu, Y. Li et al., “Easyscale: Accuracy-consistent elastic training for
deep learning,” arXiv preprint arXiv:2208.14228, 2022.

A. Qiao, A. Aghayev, W. Yu, H. Chen, Q. Ho, G. A. Gibson, and
E. P. Xing, “Litz: Elastic framework for {High-Performance} distributed
machine learning,” pp. 631-644, 2018.

S. Narayanamurthy, M. Weimer, D. Mahajan, T. Condie, S. Sellaman-
ickam, and S. S. Keerthi, “Towards resource-elastic machine learning,”
in NIPS 2013 BigLearn Workshop, vol. 1, no. 2.1, 2013, pp. 2-3.

T. Li, J. Zhong, J. Liu, W. Wu, and C. Zhang, “Ease.ml: Towards
Multi-tenant Resource Sharing for Machine Learning Workloads,”
arXiv:1708.07308.

J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon, J. Qian, H. Liu,
and C. Guo, “Tiresias: A {GPU} cluster manager for distributed deep
learning,” in /6th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), 2019, pp. 485-500.

T. N. Le, X. Sun, M. Chowdhury, and Z. Liu, “Allox: compute allocation
in hybrid clusters,” in Proceedings of the Fifteenth European Conference
on Computer Systems, 2020, pp. 1-16.

J. Mohan, A. Phanishayee, J. Kulkarni, and V. Chidambaram, “Looking
beyond {GPUs} for {DNN} scheduling on {Multi-Tenant} clusters,” in
16th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 22), 2022, pp. 579-596.

H. Yu and R. Jin, “On the Computation and Communication Complexity
of Parallel SGD with Dynamic Batch Sizes for Stochastic Non-Convex
Optimization,” arXiv:1905.04346, 2019.

H. Zheng, F. Xu, L. Chen, Z. Zhou, and F. Liu, “Cynthia: Cost-Efficient
Cloud Resource Provisioning for Predictable Distributed Deep Neural
Network Training,” in 48th ICPP 2019, pp. 1-11.

Z. Yao, A. Gholami, D. Arfeen, R. Liaw, J. Gonzalez, K. Keutzer,
and M. Mahoney, “Large batch size training of neural networks with
adversarial training and second-order information,” arXiv:1810.01021
[cs, math, stat], Jan. 2020, arXiv: 1810.01021. [Online]. Available:
http://arxiv.org/abs/1810.01021

http://dl.acm.org/citation.cfm?doid=3190508.3190517
https://arxiv.org/abs/2106.12091
https://dl.acm.org/doi/10.1145/3357223.3362719
http://arxiv.org/abs/1810.01021

	I Introduction
	II Background and Challenges
	II-A Distributed ML Training
	II-B Horizontal Scaling: Adding Workers
	II-C Vertical Scaling: Increasing Batch Size
	II-D Statistical inefficiency

	III Design
	III-A SGD Noise as a Scaling Indicator
	III-B Performance and Cost Model
	III-C Statistical Performance Model
	III-D Parallel Performance Model
	III-E Resource allocation policies

	IV Implementation
	V Experimental Evaluation
	V-A Cost and time tradeoffs
	V-B Partial Search
	V-C Model Accuracy
	V-D Memory-based pricing

	VI Related Work
	VII Conclusion
	References

