
Scavenger: A Cloud Service for Optimizing 
Cost and Performance of ML Training

INDIANA UNIVERSITY

Sahil Tyagi and Prateek Sharma



INDIANA UNIVERSITY

Distributed Training in the Cloud
• Variety of VM types and sizes in the cloud 

• Distributed training has configuration parameters that affect time and cost: 

• Cluster-size (K): # workers training in parallel 

• Batch-size (B): cumulative batch-size processed in a training step 

• Each (K, B) results in different cost-time tradeoffs!
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What is the right job configuration?

• Scavenger accurately predicts performance and 
cost of different model and (K,B) configurations 

• Uses an Online approach: 
• Leverages iterative nature of training 
• No need for prior offline profiling 
• Works in a black-box manner 
• Tensorflow-based middleware

• Cloud resources and a training job present a huge configuration space!
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Distributed Data-Parallel Training
• With Parameter server (PS), workers train independently on i.i.d. data by pulling updates 

from a central server and push updates for aggregation:     

• Each training step is an iterative, repetitive process comprised of: 

• Computation: In forward-backward pass, evaluate loss and compute gradients 

• Communication: push/pull updates to/from the PS 

• Tradeoffs in synchronous data-parallelism: K  more communication                         
and B  more computation and memory consumption

xt+1 = xt − η
1
K

1
b

k=K

∑
k=1

∇f (xk,t) → elastic

→
→
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Horizontal scaling: Increasing K
• Training can be scaled out by adding more workers and 

increasing K 

• Training time to desired accuracy reduces as K increases 

• However, scaling is not linear; increasing K by 4x does not 
reduce training time proportionately!
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 due to communication overheads!→
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Vertical scaling: Increasing B
• ML training can be scaled up by increasing batch size B 

(reducing communication overhead) 

• Scaling up VMs by increasing memory allows for larger 
batch-sizes that converge better 

• DNNs converge faster on larger B (until device saturation)
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Performance tradeoffs  Parallel and Statistical efficiency⟹

• Parallel efficiency: Amdahl’s law  lower scaling with larger workers 

• Statistical efficiency:  

• Specific to deep learning due to stochastic nature of SGD 

• Work performed on all iterations not equally useful 

• Gradients computed on a small mini-batch of data can be noisy 

• Gradient noise increases the iterations needed for convergence

→
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How to measure Statistical Efficiency?
• SGD noise compares gradient variance among different workers 

                                

• Integrates easily into the backpropagation routine

γ (t) =
𝔼[

1
K

∑K
k=1 ||g(k)

t ||2]

𝔼[||g̃t||2]
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SGD Noise efficacy to predict performance
• Gradients are volatile in early stages so noise is low 

• Once stabilized, normalize noise by K to compare performance across different Bs 

• SGD Noise reduces as B increases and thus training time decreases 
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Scavenger Performance and Cost Model

       

         

• Statistical efficiency: from empirically measured SGD noise 

• Parallel efficiency: from running/inferring for a (K, B) configuration

Cost = (# VMs) × Time × priceVM

Time = titeration × (# Iterations)
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Performance and Cost model
• Cost proportional to number of steps and time per-step; Per-step time comprises 

of computation and communication time. 

•  Job profiling and searching: 

• Full/Offline search:Run each configuration briefly; use checkpointing to resume 

• Online search:Run on extremums and interpolate from linear model 

• No-search:Use DNN-agnostic approximate model for all jobs
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Modeling Parallel Performance
• Model training is repetitive and parallel performance identical over the iterations 

• Iteration time comprises of compute and communication   

              

• Computation time:    

• Communication time:  

titeration = tcompute + tcommunication

tcompute ∝ batch-size (B)

tcommunication ∝ # workers (K )



INDIANA UNIVERSITY

Modeling Statistical Performance
• Need to know the epochs needed to converge to a specific accuracy target 

• Relative to Full GD taking  epochs to converge, training with B takes more epochs to converge:    

            

e*

e(K,B) = e* + θ ⋅ γ(K,B) ⟹ e(K,B) ∝ γ(K,B)
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Modeling Statistical Performance
• For partial search, no need to profile each configuration 

• Model noise as a function of B and fit a global linear model on a DNN:    

• Fit a global linear model for different DNNs
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Resource Allocation policy
• Build time-cost tradeoff curves using parallel and statistical performance model using 

full, partial or no-search policy 

• Choose configuration that optimizes either time, cost or in-between (knee-point) 

• Constraints on (K,B) influence the degree of exploration space  specified by user→
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Cost-Time Tradeoffs
• Per-VM cost is fixed
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Cost-Time Tradeoffs
• VMs are priced based on their allocated memory size
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Scavenger works with different pricing policies. Here, VMs are priced based on their 
allocated memory size (proportional to B), resulting in different cost-time tradeoffs
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Model Error for different search strategies
• Full: runs every configuration for few iterations  most accurate! 

• Partial: runs extreme (K,B) configurations and interpolates via performance models 

• Universal: predicts time-cost in DNN-agnostic way  least accurate!

→

→
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Prediction error of performance models. Error for full and partial search is low, and 
even acceptable for DNN-agnostic universal model.



Thank you!


