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Research Problem
* Distributed Data-parallel (DDP) training algorithms suffer different trade-offs
. BSP or Bulk-Synchronous-Parallel has high synchronization overhead

» Federated Averaging or FedAvg has low accuracy for both [ID/Non-lID data
from infrequent updates

. Stale-Synchronous Parallel or SSP also has low accuracy despite its
bounded-asynchronous approach

Contributions

 SelSync, a semi-synchronous training techniqgue that switches between
synchronous and local-SGD based on importance of updates

Propose a new data-partitioning scheme for semi-synchronous training.

» Show that local and global updates diverge more in parameter aggregation vs.
gradient averaging.

. Develop randomized data-injection for Non-IID data training

Balancing parallel and statistical aspect of DDP Training

* Unlike traditional distributed computing, DDP also has a statistical aspect due
to stochastic nature of SGD

. DDP has sensitive or critical regions in training

. Gradients get smaller and saturate, but magnitude and trajectory varies

. Crucial updates can be detected as:
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. SelSync update rule: For threshold 8, use BSP if /\ (g;) = o; else local-SGD
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SelSync Data-Partitioning Scheme
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Evaluation over lID Data

 Tested on ResNet101, VGG11, AlexNet and Transformer to achieve at-least
BSP-level accuracy/PPL: 98.5%, 90.9%, 85.15% and 90.0 respectively

 Compared with BSP, FedAvg and SSP; FedAvg config.: (1,.25), (1,.125),
(.5,.25), (.5,.125); SSP config.: staleness threshold 100 and 200; SelSync

config.: 0=0.3 and 0.5
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Evaluation over Non-lID and Unbalanced Data

« Data-injection: A random subset of workers communicate and share partial
training samples to improve overall data distribution

» Configured as (a, /) where a is the fraction of workers chosen and [ is the

fraction of batch-size to be shared; (0.5, 0.5) implies half the workers share
half the training samples at each iteration

» Batch-size is a sensitive hyperparameter so cumulatively should remain fixed
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Conclusion

. SelSync attains similar model accuracy as BSP while speed-up training

» Threshold o0 decides the Local-To-Synchronous Step Ratio (LSSR) and
synchronizes critical updates only and training locally otherwise

. Sweet spot between fully synchronous and asynchronous training

. Data-injection in semi-synchronous training improves convergence
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