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Research Problem


• Distributed Data-parallel (DDP) training algorithms suffer different trade-offs


• BSP or Bulk-Synchronous-Parallel has high synchronization overhead


• Federated Averaging or FedAvg has low accuracy for both IID/Non-IID data 
from infrequent updates


• Stale-Synchronous Parallel or SSP also has low accuracy despite its 
bounded-asynchronous approach

Contributions


• SelSync, a semi-synchronous training technique that switches between 
synchronous and local-SGD based on importance of updates


• Propose a new data-partitioning scheme for semi-synchronous training.


• Show that local and global updates diverge more in parameter aggregation vs. 
gradient averaging.


• Develop randomized data-injection for Non-IID data training

Balancing parallel and statistical aspect of DDP Training


• Unlike traditional distributed computing, DDP also has a statistical aspect due 
to stochastic nature of SGD


•  DDP has sensitive or critical regions in training


• Gradients get smaller and saturate, but magnitude and trajectory varies


• Crucial updates can be detected as:




• SelSync update rule: For threshold , use BSP if ; else local-SGD


△ (gi) =
𝔼[ | |∇ℱ(i) | |2 ] − 𝔼[ | |∇ℱ(i−1) | |2 ]

𝔼[ | |∇ℱ(i−1) | |2 ]

δ △ (gi) ≥ δ
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SelSync Data-Partitioning Scheme
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Evaluation over Non-IID and Unbalanced Data


• Data-injection: A random subset of workers communicate and share partial 
training samples to improve overall data distribution


• Configured as  where  is the fraction of workers chosen and  is the 
fraction of batch-size to be shared; (0.5, 0.5) implies half the workers share 

half the training samples at each iteration


• Batch-size is a sensitive hyperparameter so cumulatively should remain fixed





(α, β) α β

b′￼ =
b

(1 + αβN)

Evaluation over IID Data


• Tested on ResNet101, VGG11, AlexNet and Transformer to achieve at-least 
BSP-level accuracy/PPL: 98.5%, 90.9%, 85.15% and 90.0 respectively


• Compared with BSP, FedAvg and SSP; FedAvg config.: (1,.25), (1,.125), 
(.5,.25), (.5,.125); SSP config.: staleness threshold 100 and 200; SelSync 

config.: =0.3 and 0.5
δ
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Conclusion


• SelSync attains similar model accuracy as BSP while speed-up training


• Threshold  decides the Local-To-Synchronous Step Ratio (LSSR) and 
synchronizes critical updates only and training locally otherwise


• Sweet spot between fully synchronous and asynchronous training


• Data-injection in semi-synchronous training improves convergence
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