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Why is Distributed ML Training important?

Exponentially growing size of neural networks in recent years
e 2020: BART (140 million), Turing-NLG (17 billion)
e 2021: ViT (630 million), DALL-E (12 billion)
* 2022: Stable Diffusion (890 million), GPT-3.5 (1.3-175 billion)

e 2023: GPT-4 (1.8 trillion) Params-size (MB)
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» Massive repositories of potential training data 1e7 40
1e8 400
1e9 4000

Maintain Data Privacy and security (federated learning)

Reduce training time and cost/energy of running jobs in the
cloud/data-center




Current Approaches in Distributed Data-Parallel Training

Data-Parallel Training
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Background: Synchronous Data-Parallel (BSP) Training
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Background: Federated Averaging

* Federated learning crucial for on-device, data-local
training
FedAvg: ResNet101 on CIFAR10 and VGG11

on CIFAR100 with (1, 0.1)
* FedAvg [7] is a low-frequency, high-volume federated 100

learning approach in settings with balanced and L

unbalanced data distributions 5 /

A7 NCIFARLIOAID

Test accuracy

50
* Updates from fraction of clients (C) aggregated CIFAR10 NonlID
infrequently (E) on a central server. for e.g., (C, E) = 25 CIEAR100.1ID
(0.5, 0.25) —— CIFAR100 NonlID
5K 15K 25K 35K

Training steps

Data distribution significantly affects model
convergence!




Background: Stale-Synchronous Parallel Training
» SSP [8] allows workers to asynchronously send updates to central server
* Asynchronicity is however conditional; determined by staleness-threshold parameter ‘s’

* Parallel scaling can be improved by performing more work per-iteration (using larger batch-sizes)

Improving parallel efficiency of SSP

T£‘103 10 BN ResNet101
Th h ional 2 @ VGG11
us, there are computationa £ < =
limits to how much we can o 107 S 5 . T forme
3
scale SSP proportional to BSP & I J S I
(o]
B ] | N ol ol fl W |
64 128 256 512 1024 32 64 128 256 512 1024
Batch size Batch size
(a) Compute time vs. batch-size (b) Memory util. vs. batch-size




Parallel Efficiency in Distributed Training

lteration/Step-time comprised of:

Update model

tstep — tcompute + tsync + tIO
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Synchronization cost prevents linear scaling of 1 2
Number of workers

distributed training jobs and slows convergence [1, 2]




Statistical Efficiency in Distributed Training

Update model
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Summarizing prior methods

 DDP methods either maximize useful work by iterative aggregation of worker updates (BSP) or
speedup training by reducing communication frequency (FedAvg) or loosening constraints on
synchronization (SSP)

 Compared to BSP, semi-synchronous methods attain significant training speedup

* However, they primarily consider the parallel efficiency and not the statistical efficiency of
distributed training

 This reflects in the final model accuracy/eval metric of FedAvg and SSP under different (C, E) and
staleness-threshold configurations!




SelSync’s approach

 |deal approach should consider both the parallel and [] _______________________
statistical efficiency in distributed training

ML Framework

* Improve parallel efficiency by reducing communication cost _

Communication hardware/protocol

* Improve statistical efficiency by identifying critical/sensitive
sections of training phase followed by synchronization;
gradients tend to be more volatile in these regions

Can we communicate updates among workers only if they are critical/important
and avoid expensive synchronization cost when they are not?

SelSync = {Sel}ective {Sync}hronization




SelSync’s approach cont’d...

* First-order gradient information works as an effective heuristic to measure significance of model
updates; measure changes in the variance of inter-iteration gradients
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We define Relative Gradient Change as:
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Fig. 6. Adjusting threshold J on relative gradient change. Choose BSP if
A(gi) > ¢ and local SGD if < §. Setting =0 implies BSP training, while a
very high § trains only with local updates.




Data-partitioning in Synchronous Training

In traditional BSP, split dataset D into N unique
partitions across N workers

DefDP
» Referred to as Default Data-Partitioning (DefDP) DPO DP1 DP2 DP3
DPO DP1 DP2 DP3
* Does not work well in context of semi-synchronous \ Worker? Workert Worker2 Worker3

training

* Local models may fail to learn features from data partitions on other workers in settings with low

communication and largely local training




Data-partitioning in Semi-Synchronous Training

Partitioning scheme optimal for hybrid of local and

synchronous updates SelDP
DPO DP1 DP2 DP3
* Instead of partitioning into subset of unique chunks, ’
shuffle chunks of D based on worker ID / lg}j
DPO DP1 DP2 DP3
DP1 DP2 DP3 DPO
» Referred as SelSync Data-Partitioning (SelDP) DP2 DP3

DPO DP1
DP3 DPO DP1 DP2
Worker0 Worker1 Worker2 Worker3

e Local model replicas are thus not skewed from mostly
local training

* During synchronization step, each worker update comes from a unique chunk




Data-partitioning in Semi-Synchronous Training cont’d...

ResNet101 on CIFAR10

VGG11 on CIFAR100

AlexNet on ImageNet-1K

Transformer on WikiText-103
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Gradient vs. Parameter Aggregation in SelSync

BSP Gradient Aggregation
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Gradient vs. Parameter Aggregation in SelSync

100

oo
ot

-~
S

% Test Accuracy

55

80.0

% Test Accuracy

Set delta = 0.25 with SelDP scheme

,MN\."/VW"“'/' '. r/ &
/ '

—— Parameter Aggregation
—— Gradient Aggregation

25 50 75
Epochs

(a) ResNet101

—— Parameter Aggregation
—— Gradient Aggregation

4 6
Epochs

(c) AlexNet

100

% Test Accuracy

Test Perplexity

100

-3
ot

ot
o

25

Epochs
(b) VGG11
120
110
l?
100 h
“U Mo
N o1 0.3 0.5 0.7
Epochs

(d) Transformer

ResNet101
2
=
2 0
=
-2
BSP Param Agg. Grad Agg.
(a) Epoch 25
02—1- ==
u 0.1
5
o 0.0
=
-0.1
—0.2 = i

BSP Param Agg. Grad Agg.

(b) Epoch 50




Training on unbalanced and Non-l.l.D. data

Federated learning suffers from low convergence due to unbalanced and skewed data distribution

Randomized Data-injection [9] improves distribution while preserving privacy

Random subset of workers share partial training data at each iteration with (alpha, beta) params

However, batch-size is a sensitive hyperparameter that affects final model quality

SelSync vs. FedAvg with non-L.1.D. data
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Implementation and Evaluation

Algorithm 1: {Seljective {Sync}hronization * Implemented in PyTorch over PS architecture
1 Input: learning rate 7, gradient change threshold 9,
cluster-size NN, training data D,, on worker with id n
2 procedure train():
3 W(n,0) = pullFromPS () D initialize parameters ® TeStEd on a 16 V].OO GPU Cluster fOr ”D data, 10'
4 for i=0,1,...1 on worker id n > training iterations nodes for non_“D data
5 bit [N] flags =0 b synchronization status
6 d(in) € Dn > sample mini-batch from data
7 9i = VF(2 (i) W(n,0)) > compute gradient at 4 * Models trained: ResNet101, VGG11, AlexNet,
8 A(g;) = RelativeGradChange (||g;||?)
9 W(n,i+1) = W(n,i) — 71 gi > apply local updates TranSfOrmer
10 if A(g;)>0:
11 flags [n] =1 > synchronize called by
‘ worker n as its gradient change exceeds 9 * Datasets Used: CIFAR]-O; CIFAR]-OO/ ImagENet;
12 flags = allgather_status(flags) ©» WikiText-103
call all-gather on flags such that index n
holds worker n’s synchronization status bit
13 if 1 € flags: We compare SelSync with BSP, FedAvg and SSP
14 pushToPS (w(y, ;41)) > push local updates
- W(n,i+1) = PullFromPS () o pull global Metrics: Final accuracy/perplexity, overall speedup over BSP




SelSync Overheads

e Gradients computed over each iteration can be noisy; smoothing applied on Relative Gradient
Change

e Additional overhead of partitioning training data with SelDP scheme
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Training Performance
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Related Work

Parallel and Statistical efficiency in distributed training:
[1] Scavenger: A Cloud Service for Optimizing Cost and Performance of ML Training

[2] GraVAC: Adaptive Compression for Communication-Efficient Distributed DL Training

Sensitive/Critical Regions in DNN Training:
[3] The Early Phase of Neural Network Training
[4] Critical Learning Periods in Deep Neural Networks

[5] Accordion: Adaptive Gradient Compression via Critical Learning Regime Identification

Related techniques/methods:
[6] BSP (on PS): Scaling Distributed Machine Learning with the Parameter Server
[7] FedAvg: Communication-Efficient Learning of Deep Network from Decentralized Data
[8] SSP: More Effective Distributed ML via a Stale-Synchronous Parameter Server

[9] ScaDLES: Scalable Deep Learning over Streaming Data at the Edge




Conclusion

* Relative Gradient Change serves as an effective indicator of measuring the significance of each
gradient update in DNN training

* BSP has high synchronization cost; FedAvg mitigates communication with infrequent aggregation
but degrades model generalization; training with SSP saturates convergence due to stale updates

» SelSync achieves similar accuracy to BSP while reducing communication depending on delta value.
Speeds up training by up to 14x in our evaluation

* Large delta raises the threshold for communication, prioritizing speedup over convergence. Small
delta increases synchronization frequency and favors convergence quality.

* Randomized data-injection is effective in the context of semi-synchronous training when training
data is skewed and unbalanced




Thank youl!

Accelerating Distributed ML Training via Selective Synchronization

https://sahiltyagi.academicwebsite.com/
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