

Accelerating Distributed ML Training via Selective Synchronization

Sahil Tyagi and Martin Swany

INDIANA UNIVERSITY BLOOMINGTON

IEEE CLUSTER 2023

Why is Distributed ML Training important?

- Exponentially growing size of neural networks in recent years
 - 2020: BART (140 million), Turing-NLG (17 billion)
 - 2021: ViT (630 million), DALL-E (12 billion)
 - 2022: Stable Diffusion (890 million), GPT-3.5 (1.3-175 billion)
 - 2023: GPT-4 (1.8 trillion)
- Massive repositories of potential training data

• Maintain Data Privacy and security (federated learning)

• Reduce training time and cost/energy of running jobs in the cloud/data-center

# Params	Params-size (MB)
1e6	4
1e7	40
1e8	400
1e9	4000

Current Approaches in Distributed Data-Parallel Training

Background: Synchronous Data-Parallel (BSP) Training

$$w_{i+1} = w_i - \eta \frac{1}{N} \sum_{n=1}^{n=N} \frac{\partial}{\partial w_i} \left(\frac{1}{|b|} \sum_{d_{(i,n)} \in \mathcal{D}_n} \mathcal{L}(x_{(i,n)}, w_i)\right)$$

Background: Federated Averaging

- Federated learning crucial for on-device, data-local training
- FedAvg [7] is a low-frequency, high-volume federated learning approach in settings with balanced and unbalanced data distributions
- Updates from fraction of clients (C) aggregated infrequently (E) on a central server. for e.g., (C, E) = (0.5, 0.25)

Data distribution significantly affects model convergence!

FedAvg: ResNet101 on CIFAR10 and VGG11 on CIFAR100 with (1, 0.1)

Background: Stale-Synchronous Parallel Training

- SSP [8] allows workers to asynchronously send updates to central server
- Asynchronicity is however conditional; determined by *staleness-threshold* parameter 's'
- Parallel scaling can be improved by performing more work per-iteration (using larger batch-sizes)

Parallel Efficiency in Distributed Training

Synchronization cost prevents linear scaling of distributed training jobs and slows convergence [1, 2]

Iteration/Step-time comprised of:

$$t_{step} = t_{compute} + t_{sync} + t_{IO}$$

Statistical Efficiency in Distributed Training

- SGD not fully composable due to its stochastic nature
- Certain training phases or regions are more critical [3,4,5]

First-order information effectively approximates second-order gradients

Summarizing prior methods

- DDP methods either maximize useful work by iterative aggregation of worker updates (BSP) or speedup training by reducing communication frequency (FedAvg) or loosening constraints on synchronization (SSP)
- Compared to BSP, semi-synchronous methods attain significant training speedup

• However, they primarily consider the parallel efficiency and *not* the statistical efficiency of distributed training

• This reflects in the final model accuracy/eval metric of FedAvg and SSP under different (C, E) and staleness-threshold configurations!

SelSync's approach

- Ideal approach should consider both the parallel and statistical efficiency in distributed training
- Improve *parallel efficiency* by reducing communication cost
- Improve statistical efficiency by identifying critical/sensitive sections of training phase followed by synchronization; gradients tend to be more volatile in these regions

Can we communicate updates among workers only if they are critical/important and avoid expensive synchronization cost when they are not?

SelSync = {Sel}ective {Sync}hronization

SelSync's approach cont'd...

 First-order gradient information works as an effective heuristic to measure significance of model updates; *measure changes in the variance of inter-iteration gradients*

We define *Relative Gradient Change* as:

$$\triangle(g_i) = \left| \frac{\mathbb{E}[||\nabla \mathcal{F}_{(i)}||^2] - \mathbb{E}[||\nabla \mathcal{F}_{(i-1)}||^2]}{\mathbb{E}[||\nabla \mathcal{F}_{(i-1)}||^2]} \right|$$

Delta-based selective synchronization

Fig. 6. Adjusting threshold δ on relative gradient change. Choose BSP if $\triangle(g_i) \geq \delta$ and local SGD if $< \delta$. Setting $\delta=0$ implies BSP training, while a very high δ trains only with local updates.

Data-partitioning in Synchronous Training

- In traditional BSP, split dataset **D** into **N** unique partitions across **N** workers
- Referred to as **Default Data-Partitioning (DefDP)**

• Does not work well in context of semi-synchronous training

• Local models may fail to learn features from data partitions on other workers in settings with low communication and largely local training

Data-partitioning in Semi-Synchronous Training

- Partitioning scheme optimal for hybrid of local and synchronous updates
- Instead of partitioning into subset of unique chunks, shuffle chunks of *D* based on worker ID
- Referred as SelSync Data-Partitioning (SelDP)
- Local model replicas are thus not skewed from *mostly* local training
- During synchronization step, each worker update comes from a unique chunk

Data-partitioning in Semi-Synchronous Training cont'd...

ResNet101 on CIFAR10

VGG11 on CIFAR100

AlexNet on ImageNet-1K

Transformer on WikiText-103

Set delta to 0.25

Gradient vs. Parameter Aggregation in SelSync

Assuming all workers start with the same model state

Gradient vs. Parameter Aggregation in SelSync

Training on unbalanced and Non-I.I.D. data

- Federated learning suffers from low convergence due to unbalanced and skewed data distribution
- Randomized Data-injection [9] improves distribution while preserving privacy
- Random subset of workers share partial training data at each iteration with (alpha, beta) params
- However, batch-size is a sensitive hyperparameter that affects final model quality

$$b^{'}=rac{b}{(1+lphaeta N)}$$

Data-injection in SelSync needs (alpha, beta, delta) config

Implementation and Evaluation

Algorithm 1: {Sel}ective {Sync}hronization		
1 Input: learning rate η , gradient change threshold δ ,		
	cluster-size N, training data \mathcal{D}_n on worker with id n	
2	<pre>procedure train():</pre>	
3	$w_{(n,0)} = \text{pullFromPS}() \Rightarrow \text{initialize parameters}$	
4	for $i=0,1,I$ on worker id $n \triangleright$ training iterations	
5	bit [N] flags = $0 \triangleright$ synchronization status	
6	$d_{(i,n)} \in \mathcal{D}_n$ \triangleright sample mini-batch from data	
7	$g_i = \nabla \mathcal{F}(x_{(i,k)}, w_{(n,i)}) \triangleright$ compute gradient at i	
8	$ riangle(g_i)$ = RelativeGradChange ($ g_i ^2$)	
9	$w_{(n,i+1)} = w_{(n,i)} - \eta \cdot g_i \triangleright$ apply local updates	
10	$\mathbf{if} \ \triangle(g_i) \geq \delta:$	
11	flags $[n] = 1 \implies$ synchronize called by worker n as its gradient change exceeds δ	
12	<pre>flags = allgather_status(flags) > call all-gather on flags such that index n holds worker n's synchronization status bit</pre>	
13	if $1 \in flags$:	
14	pushToPS ($w_{(n,i+1)}$) > push local updates	
15	$w_{(n,i+1)} = \text{pullFromPS}() \triangleright \text{pull global}$	

- Implemented in PyTorch over PS architecture
- Tested on a 16 V100 GPU cluster for IID data, 10nodes for non-IID data
- Models trained: ResNet101, VGG11, AlexNet, Transformer
- Datasets used: CIFAR10, CIFAR100, ImageNet, WikiText-103

We compare SelSync with BSP, FedAvg and SSP Metrics: Final accuracy/perplexity, overall speedup over BSP

SelSync Overheads

- Gradients computed over each iteration can be noisy; smoothing applied on *Relative Gradient Change*
- Additional overhead of partitioning training data with SelDP scheme

Training Performance

FA1: FedAvg (C, E) = (1, 0.25)

FA2: FedAvg (C, E) = (1, 0.125)

FA4: FedAvg (C, E) = (0.5, 0.125)

FA3: FedAvg (C, E) = (0.5, 0.25)

Related Work

Parallel and Statistical efficiency in distributed training:

- [1] Scavenger: A Cloud Service for Optimizing Cost and Performance of ML Training
- [2] GraVAC: Adaptive Compression for Communication-Efficient Distributed DL Training

Sensitive/Critical Regions in DNN Training:

- [3] The Early Phase of Neural Network Training
- [4] Critical Learning Periods in Deep Neural Networks
- [5] Accordion: Adaptive Gradient Compression via Critical Learning Regime Identification

Related techniques/methods:

- [6] BSP (on PS): Scaling Distributed Machine Learning with the Parameter Server
- [7] FedAvg: Communication-Efficient Learning of Deep Network from Decentralized Data
- [8] SSP: More Effective Distributed ML via a Stale-Synchronous Parameter Server
- [9] ScaDLES: Scalable Deep Learning over Streaming Data at the Edge

Conclusion

- **Relative Gradient Change** serves as an effective indicator of measuring the significance of each gradient update in DNN training
- **BSP** has high synchronization cost; **FedAvg** mitigates communication with infrequent aggregation but degrades model generalization; training with **SSP** saturates convergence due to stale updates
- *SelSync* achieves similar accuracy to BSP while reducing communication depending on delta value. Speeds up training by up to 14x in our evaluation
- Large delta raises the threshold for communication, prioritizing speedup over convergence. Small delta increases synchronization frequency and favors convergence quality.
- Randomized data-injection is effective in the context of semi-synchronous training when training data is skewed and unbalanced

Thank you!

Accelerating Distributed ML Training via Selective Synchronization

https://sahiltyagi.academicwebsite.com/

