
Accelerating Distributed ML Training
via Selective Synchronization

IEEE CLUSTER 2023

Sahil Tyagi and Martin Swany

INDIANA UNIVERSITY BLOOMINGTON

Why is Distributed ML Training important?

• Exponentially growing size of neural networks in recent years
• 2020: BART (140 million), Turing-NLG (17 billion)
• 2021: ViT (630 million), DALL-E (12 billion)
• 2022: Stable Diffusion (890 million), GPT-3.5 (1.3-175 billion)
• 2023: GPT-4 (1.8 trillion)

• Maintain Data Privacy and security (federated learning)

• Reduce training time and cost/energy of running jobs in the
cloud/data-center

Params Params-size (MB)

1e6 4

1e7 40

1e8 400

1e9 4000

• Massive repositories of potential training data

Current Approaches in Distributed Data-Parallel Training

Data-Parallel Training

Bulk-Synchronous
Parallel [6]

Federated
Averaging [7]

Stale-Synchronous
Parallel [8]

SelSync
(this work)

Semi-synchronousSynchronous

Background: Synchronous Data-Parallel (BSP) Training

DatasetMini-batch (b) Mini-batch (b)

Compute
updates

Compute
updates

Update model

g1 g2

VGG16

Compute

Compute

Worker 1

Worker n

.

.

.

Sync

Sync

Compute

Compute

(i)-th Iteration (i+1)-th Iteration

Background: Federated Averaging

• Federated learning crucial for on-device, data-local
training

• FedAvg [7] is a low-frequency, high-volume federated
learning approach in settings with balanced and
unbalanced data distributions

• Updates from fraction of clients (C) aggregated
infrequently (E) on a central server. for e.g., (C, E) =
(0.5, 0.25)

FedAvg: ResNet101 on CIFAR10 and VGG11
on CIFAR100 with (1, 0.1)

Data distribution significantly affects model
convergence!

Background: Stale-Synchronous Parallel Training
• SSP [8] allows workers to asynchronously send updates to central server

• Asynchronicity is however conditional; determined by staleness-threshold parameter ‘s’

• Parallel scaling can be improved by performing more work per-iteration (using larger batch-sizes)

Improving parallel efficiency of SSP

Thus, there are computational
limits to how much we can

scale SSP proportional to BSP

Parallel Efficiency in Distributed Training

DatasetMini-batch (b) Mini-batch (b)

Compute
updates

Compute
updates

Update model

g1 g2

Iteration/Step-time comprised of:

Synchronization cost prevents linear scaling of
distributed training jobs and slows convergence [1, 2]

Statistical Efficiency in Distributed Training

DatasetMini-batch (b) Mini-batch (b)

Compute
updates

Compute
updates

Update model

g1 g2 g1

g2
Full gradient descent

Mini-batch gradient descentVariance between local gradients

• SGD not fully composable due to its
stochastic nature

• Certain training phases or regions are more
critical [3,4,5]

First-order information effectively approximates second-order gradients

Summarizing prior methods

• DDP methods either maximize useful work by iterative aggregation of worker updates (BSP) or
speedup training by reducing communication frequency (FedAvg) or loosening constraints on
synchronization (SSP)

• Compared to BSP, semi-synchronous methods attain significant training speedup

• However, they primarily consider the parallel efficiency and not the statistical efficiency of
distributed training

• This reflects in the final model accuracy/eval metric of FedAvg and SSP under different (C, E) and
staleness-threshold configurations!

SelSync’s approach

• Ideal approach should consider both the parallel and
statistical efficiency in distributed training

• Improve parallel efficiency by reducing communication cost

• Improve statistical efficiency by identifying critical/sensitive
sections of training phase followed by synchronization;
gradients tend to be more volatile in these regions

SelSync = {Sel}ective {Sync}hronization

Can we communicate updates among workers only if they are critical/important
and avoid expensive synchronization cost when they are not?

Machine 1 Machine 2 Machine n

Communication hardware/protocol

ML Framework

ML model

SelSync

SelSync’s approach cont’d…

We define Relative Gradient Change as:

Delta-based selective synchronization

• First-order gradient information works as an effective heuristic to measure significance of model
updates; measure changes in the variance of inter-iteration gradients

Data-partitioning in Synchronous Training

• In traditional BSP, split dataset D into N unique
partitions across N workers

• Referred to as Default Data-Partitioning (DefDP)

• Does not work well in context of semi-synchronous
training

• Local models may fail to learn features from data partitions on other workers in settings with low
communication and largely local training

DefDP

Data-partitioning in Semi-Synchronous Training

• Partitioning scheme optimal for hybrid of local and
synchronous updates

• Instead of partitioning into subset of unique chunks,
shuffle chunks of D based on worker ID

• Local model replicas are thus not skewed from mostly
local training

• During synchronization step, each worker update comes from a unique chunk

• Referred as SelSync Data-Partitioning (SelDP)

SelDP

Data-partitioning in Semi-Synchronous Training cont’d…

ResNet101 on CIFAR10

VGG11 on CIFAR100

AlexNet on ImageNet-1K

Transformer on WikiText-103

Set delta to 0.25

Gradient vs. Parameter Aggregation in SelSync
SelSync Gradient Aggregation

Sync-step

g(i+1, 1) g(i+1, n)

step (i+1)

step (i+2)

Worker 1 Worker n

step (i)

g(i, 1) g(i, n)
Local-stepNo synchronization!

Assuming all workers start with the same model state

In BSP, for any iteration i

With gradient aggregation in SelSync

BSP Gradient Aggregation

g(i, 1)

step (i)

Compute gradients

Aggregate gradients

Update model

step (i+1)

g(i, n)

Worker 1 Worker n

Gradient vs. Parameter Aggregation in SelSync
Set delta = 0.25 with SelDP scheme ResNet101

Training on unbalanced and Non-I.I.D. data

• Federated learning suffers from low convergence due to unbalanced and skewed data distribution

• Randomized Data-injection [9] improves distribution while preserving privacy

SelSync vs. FedAvg with non-I.I.D. data

• Random subset of workers share partial training data at each iteration with (alpha, beta) params

• However, batch-size is a sensitive hyperparameter that affects final model quality

Data-injection in SelSync needs (alpha, beta, delta) config

Implementation and Evaluation

• Implemented in PyTorch over PS architecture

• Tested on a 16 V100 GPU cluster for IID data, 10-
nodes for non-IID data

• Datasets used: CIFAR10, CIFAR100, ImageNet,
WikiText-103

• Models trained: ResNet101, VGG11, AlexNet,
Transformer

We compare SelSync with BSP, FedAvg and SSP

Metrics: Final accuracy/perplexity, overall speedup over BSP

SelSync Overheads

• Gradients computed over each iteration can be noisy; smoothing applied on Relative Gradient
Change

• Additional overhead of partitioning training data with SelDP scheme

Training Performance
FA1: FedAvg (C, E) = (1, 0.25)

FA2: FedAvg (C, E) = (1, 0.125) FA4: FedAvg (C, E) = (0.5, 0.125)

FA3: FedAvg (C, E) = (0.5, 0.25) SSP1: SSP s = 100

SSP2: SSP s = 200

SS1: SelSync delta = 0.3

SS2: SelSync delta = 0.5

BSP FA1 FA2 FA3 FA4 SSP1 SSP2 SS1 SS2

°20

°15

°10

°5

0

%
A
cc

.
D

iÆ
.

0

5

10

S
pe

ed
up

VGG11

BSP FA1 FA2 FA3 FA4 SSP1 SSP2 SS1 SS2

°4

°2

0

%
A
cc

.
D

iÆ
.

0

1

2

S
pe

ed
up

ResNet101

BSP FA1 FA2 FA3 FA4 SSP1 SSP2 SS1 SS2
°10.0

°7.5

°5.0

°2.5

0.0

%
A
cc

.
D

iÆ
.

0

1

2

3

4

S
pe

ed
up

AlexNet

BSP FA1 FA2 FA3 FA4 SSP1 SSP2 SS1 SS2

°1.5

°1.0

°0.5

0.0

P
P
L

D
iÆ

.

0

1

2

S
pe

ed
up

Transformer

Related Work

Parallel and Statistical efficiency in distributed training:

 [1] Scavenger: A Cloud Service for Optimizing Cost and Performance of ML Training

 [2] GraVAC: Adaptive Compression for Communication-Efficient Distributed DL Training

Related techniques/methods:

 [6] BSP (on PS): Scaling Distributed Machine Learning with the Parameter Server

 [7] FedAvg: Communication-Efficient Learning of Deep Network from Decentralized Data

 [8] SSP: More Effective Distributed ML via a Stale-Synchronous Parameter Server

 [9] ScaDLES: Scalable Deep Learning over Streaming Data at the Edge

Sensitive/Critical Regions in DNN Training:

 [3] The Early Phase of Neural Network Training

 [4] Critical Learning Periods in Deep Neural Networks

 [5] Accordion: Adaptive Gradient Compression via Critical Learning Regime Identification

Conclusion

• Relative Gradient Change serves as an effective indicator of measuring the significance of each
gradient update in DNN training

• BSP has high synchronization cost; FedAvg mitigates communication with infrequent aggregation
but degrades model generalization; training with SSP saturates convergence due to stale updates

• Large delta raises the threshold for communication, prioritizing speedup over convergence. Small
delta increases synchronization frequency and favors convergence quality.

• Randomized data-injection is effective in the context of semi-synchronous training when training
data is skewed and unbalanced

• SelSync achieves similar accuracy to BSP while reducing communication depending on delta value.
Speeds up training by up to 14x in our evaluation

Thank you!

https://sahiltyagi.academicwebsite.com/

Federated
Learning

Lossy Compression

Cloud
Computing Adaptive

Systems

Accelerating Distributed ML Training via Selective Synchronization

Large-scale
ML

Differential Privacy

Stream
processing

Communication OptimizationDistributed
Systems

