Accelerating Distributed ML Training
via Selective Synchronization

Sahil Tyagi and Martin Swany

INDIANA UNIVERSITY BLOOMINGTON IEEE CLUSTER 2023

Why is Distributed ML Training important?

Exponentially growing size of neural networks in recent years
e 2020: BART (140 million), Turing-NLG (17 billion)
e 2021: ViT (630 million), DALL-E (12 billion)
* 2022: Stable Diffusion (890 million), GPT-3.5 (1.3-175 billion)

e 2023: GPT-4 (1.8 trillion) Params-size (MB)

leb6 4

» Massive repositories of potential training data 1e7 40
1e8 400
1e9 4000

Maintain Data Privacy and security (federated learning)

Reduce training time and cost/energy of running jobs in the
cloud/data-center

Current Approaches in Distributed Data-Parallel Training

Data-Parallel Training

/
Federated Stale-Synchronous
[6] Averaging Parallel
)
Synchronous Semi-synchronous

Background: Synchronous Data-Parallel (BSP) Training

(i)-th Iteration ' (i+1)-th Iteration
Update model Worker 1

gl g2

/ / Worker n

80 1
¢ 20 I
1= 9 1 L s
Wit+1 = Wi — UN Z 6wz(m Z ‘C(w(i,n)vwi)) K 4K 6|K' | 8K 10K 12K 14K
n=1 d(i,n)€Dn Training steps

Background: Federated Averaging

* Federated learning crucial for on-device, data-local
training
FedAvg: ResNet101 on CIFAR10 and VGG11

on CIFAR100 with (1, 0.1)
* FedAvg [7] is a low-frequency, high-volume federated 100

learning approach in settings with balanced and L

unbalanced data distributions 5 /

A7 NCIFARLIOAID

Test accuracy

50
* Updates from fraction of clients (C) aggregated CIFAR10 NonlID
infrequently (E) on a central server. for e.g., (C, E) = 25 CIEAR100.1ID
(0.5, 0.25) —— CIFAR100 NonlID
5K 15K 25K 35K

Training steps

Data distribution significantly affects model
convergence!

Background: Stale-Synchronous Parallel Training
» SSP [8] allows workers to asynchronously send updates to central server
* Asynchronicity is however conditional; determined by staleness-threshold parameter ‘s’

* Parallel scaling can be improved by performing more work per-iteration (using larger batch-sizes)

Improving parallel efficiency of SSP

T£‘103 10 BN ResNet101
Th h ional 2 @ VGG11
us, there are computationa £ < =
limits to how much we can o 107 S 5 . T forme
3
scale SSP proportional to BSP & I J S I
(o]
B] | N ol ol fl W |
64 128 256 512 1024 32 64 128 256 512 1024
Batch size Batch size
(a) Compute time vs. batch-size (b) Memory util. vs. batch-size

Parallel Efficiency in Distributed Training

lteration/Step-time comprised of:

Update model

tstep — tcompute + tsync + tIO

3 —e— ResNet101 —4&— AlexNe
—— VGG11

oF b Mini-batch (b)

Rel. Throughput
(\)

—_

4 8 16

Synchronization cost prevents linear scaling of 1 2
Number of workers

distributed training jobs and slows convergence [1, 2]

Statistical Efficiency in Distributed Training

Update model

gl g2 Variance between local gra<d_i_e_n_t_s ____________ Mini-batch gradient descent
/ / b " Full gr;dient descent §
g2
batch (b Mini-batch (b) First-order information effectively approximates second-order gradients
600 24
v | 22 v .
) 73 4800 | — Hessian Eigen value q:d 73 qé
* SGD not fully composable due to its = 3700 % —— Gradientvariance 8¢ ¢ g
. YL 1= & >
stochastic nature i %OOW\ C . i ’
3 1500 | \\ 0g 8 E
o . . o is 400 \1“; o - %"'6 G :i:3 G
* Certain training phases or regions are more —— 0 5 T K
critical [3,4,5] Training steps Training steps

(a) ResNet101 (b) VGGI11

Summarizing prior methods

 DDP methods either maximize useful work by iterative aggregation of worker updates (BSP) or
speedup training by reducing communication frequency (FedAvg) or loosening constraints on
synchronization (SSP)

 Compared to BSP, semi-synchronous methods attain significant training speedup

* However, they primarily consider the parallel efficiency and not the statistical efficiency of
distributed training

 This reflects in the final model accuracy/eval metric of FedAvg and SSP under different (C, E) and
staleness-threshold configurations!

SelSync’s approach

 |deal approach should consider both the parallel and [] _______________________
statistical efficiency in distributed training

ML Framework

* Improve parallel efficiency by reducing communication cost _

Communication hardware/protocol

* Improve statistical efficiency by identifying critical/sensitive
sections of training phase followed by synchronization;
gradients tend to be more volatile in these regions

Can we communicate updates among workers only if they are critical/important
and avoid expensive synchronization cost when they are not?

SelSync = {Sel}ective {Sync}hronization

SelSync’s approach cont’d...

* First-order gradient information works as an effective heuristic to measure significance of model
updates; measure changes in the variance of inter-iteration gradients

o

Te) - o
- I A(gi) é
o Test metric 2 é
= <
2] e
s

&

0 11K 22K 33K

Training steps

(a) ResNet101

A(

5
20 40 60 80
% Test Accuracy

0 10K 20K 30K
Training steps

(c) AlexNet

0.3
100

A(gi)
01 02
50 75
% Test Accuracy

&
0 5K 10K 15K
Training steps
(b) VGGI11
o
&
- A(gi) 2
3 Test metric § 3
S g
0 [}
o o Q-
“ 3
8 N =
o - b d
0 13K 26K 39K

Training steps

(d) Transformer

We define Relative Gradient Change as:

E[|VF@i)|°] - E[|VFu-1)|[°]
E[l|VF)lP

A(gi) =

Delta-based selective synchronization
N\ €—> M

BSP local-SGD

Fig. 6. Adjusting threshold J on relative gradient change. Choose BSP if
A(gi) > ¢ and local SGD if < §. Setting =0 implies BSP training, while a
very high § trains only with local updates.

Data-partitioning in Synchronous Training

In traditional BSP, split dataset D into N unique
partitions across N workers

DefDP
» Referred to as Default Data-Partitioning (DefDP) DPO DP1 DP2 DP3
DPO DP1 DP2 DP3
* Does not work well in context of semi-synchronous \ Worker? Workert Worker2 Worker3

training

* Local models may fail to learn features from data partitions on other workers in settings with low

communication and largely local training

Data-partitioning in Semi-Synchronous Training

Partitioning scheme optimal for hybrid of local and

synchronous updates SelDP
DPO DP1 DP2 DP3
* Instead of partitioning into subset of unique chunks, ’
shuffle chunks of D based on worker ID / lg}j
DPO DP1 DP2 DP3
DP1 DP2 DP3 DPO
» Referred as SelSync Data-Partitioning (SelDP) DP2 DP3

DPO DP1
DP3 DPO DP1 DP2
Worker0 Worker1 Worker2 Worker3

e Local model replicas are thus not skewed from mostly
local training

* During synchronization step, each worker update comes from a unique chunk

Data-partitioning in Semi-Synchronous Training cont’d...

ResNet101 on CIFAR10

VGG11 on CIFAR100

AlexNet on ImageNet-1K

Transformer on WikiText-103

Set delta to 0.25

25

% Test Accuracy
9
o

0 25 50 75

co
o

g
R

% Test Accuracy
(@)
o

[\
o

[\

Epochs
(a) ResNet101

4 6
Epochs

(c) AlexNet

SelDP
DefDP

100

125

% Test Accuracy

100
o~
75
50 |
25
15 30 45 60 75

Epochs
(b) VGG11

0.36 0.42
Epochs

(d) Transformer

90

Gradient vs. Parameter Aggregation in SelSync

BSP Gradient Aggregation

Worker 1 Worker n
Winh b------------ Wi n)
step (i)i

Compute gradients

N
Aggregate gradients| 2, =), (i, n)

n=1

Update model | Wi+ = Wi — 18 Wiit1.0) = Wiy — 18()

step (i+1)l i

Wil =W

In BSP, for any iterationi , -,

(i+1,n)

(i,n)

Assuming all workers start with the same model state

SelSync Gradient Aggregation

Worker 1 Worker n
L(R)] [ooccocccoossssssosssssss Wi n) A
step (i)
No synchronization! Local-step
\4
“"H']‘]’ = “‘\"'»13 — N8, Wi+1,n) = Win) — N8(in)
A 4
step (i+1) "
A\ 4 v
i
8i+n = (g + 1,n) ne-
n=1 Sy c Step
Wii+2.1) = Wi+ =)]giﬁl’ Wir2.n) = Wiit1,n) — ']g(hLl)
v

step (i+2)l i

With gradient aggregation in SelSync "1 # V1)

Gradient vs. Parameter Aggregation in SelSync

100

oo
ot

-~
S

% Test Accuracy

55

80.0

% Test Accuracy

Set delta = 0.25 with SelDP scheme

,MN\."/VW"“'/' '. r/ &
/ '

—— Parameter Aggregation
—— Gradient Aggregation

25 50 75
Epochs

(a) ResNet101

—— Parameter Aggregation
—— Gradient Aggregation

4 6
Epochs

(c) AlexNet

100

% Test Accuracy

Test Perplexity

100

-3
ot

ot
o

25

Epochs
(b) VGG11
120
110
l?
100 h
“U Mo
N o1 0.3 0.5 0.7
Epochs

(d) Transformer

ResNet101
2
=
2 0
=
-2
BSP Param Agg. Grad Agg.
(a) Epoch 25
02—1- ==
u 0.1
5
o 0.0
=
-0.1
—0.2 = i

BSP Param Agg. Grad Agg.

(b) Epoch 50

Training on unbalanced and Non-l.l.D. data

Federated learning suffers from low convergence due to unbalanced and skewed data distribution

Randomized Data-injection [9] improves distribution while preserving privacy

Random subset of workers share partial training data at each iteration with (alpha, beta) params

However, batch-size is a sensitive hyperparameter that affects final model quality

SelSync vs. FedAvg with non-L.1.D. data

/ b 100 %0

b = | T AR R 3
(1+ afN) S % S 60 /garvg/’
< < 40W (0.5,0.5,0.05)
B 60 i (0.5,0.5,0.3) |
s WMAAWMM e 20 —— (0.75,0.75,0.3)
Data-injection in SelSync needs (alpha, beta, delta) config 18k 12K 18K 24K 4K 12K 20K 28K
Training steps Training steps
(a) ResNet101 on CIFARI10 (b) VGG11 on CIFAR100

Implementation and Evaluation

Algorithm 1: {Seljective {Sync}hronization * Implemented in PyTorch over PS architecture
1 Input: learning rate 7, gradient change threshold 9,
cluster-size NN, training data D,, on worker with id n
2 procedure train():
3 W(n,0) = pullFromPS () D initialize parameters ® TeStEd on a 16 V].OO GPU Cluster fOr ”D data, 10'
4 for i=0,1,...1 on worker id n > training iterations nodes for non_“D data
5 bit [N] flags =0 b synchronization status
6 d(in) € Dn > sample mini-batch from data
7 9i = VF(2 (i) W(n,0)) > compute gradient at 4 * Models trained: ResNet101, VGG11, AlexNet,
8 A(g;) = RelativeGradChange (||g;||?)
9 W(n,i+1) = W(n,i) — 71 gi > apply local updates TranSfOrmer
10 if A(g;)>0:
11 flags [n] =1 > synchronize called by
‘ worker n as its gradient change exceeds 9 * Datasets Used: CIFAR]-O; CIFAR]-OO/ ImagENet;
12 flags = allgather_status(flags) ©» WikiText-103
call all-gather on flags such that index n
holds worker n’s synchronization status bit
13 if 1 € flags: We compare SelSync with BSP, FedAvg and SSP
14 pushToPS (w(y, ;41)) > push local updates
- W(n,i+1) = PullFromPS () o pull global Metrics: Final accuracy/perplexity, overall speedup over BSP

SelSync Overheads

e Gradients computed over each iteration can be noisy; smoothing applied on Relative Gradient
Change

e Additional overhead of partitioning training data with SelDP scheme

g . - 25 = EEE DefDP
=18 |- | w = 50 E 10° mmm SelDP
i . = 100 50
s 12 £
" v = 200 5 10! -
E 6 =2 I
- =
|_
| I i l I 0 i Drg = . , ,
ResNet101 VGG11 AlexNet Transformer CIFAR10 CIFAR100 WikiText103 ImageNet
(a) A(g;) computation overhead (b) Data-partitioning overhead

Training Performance

% Acc. Diff.

% Acc. Diff.

FA1: FedAvg (C, E) = (1, 0.25)

FA2: FedAvg (C, E) = (1, 0.125)

ResNet101

|
N

|
~

0
B Acc. Diff
EE Speedup

BSP

FA1

FA4

AlexNet

SSP1

SSP2

B Acc. Diff.

—7.51

0.0
—2.51
—5.01

B Speedup

HHH

Speedup

—10.0
BSP

FA4

SSP1

SSP2

FA3: FedAvg (C, E) = (0.5, 0.25)

FA4: FedAvg (C, E) = (0.5, 0.125)

% Acc. Diff.

PPL Diff.

SSP1: SSP s = 100

SSP2: SSP s = 200

SS1: SelSync delta=0.3

$S2: SelSync delta = 0.5

|
=
o

[
—
o

;

[
i
ot

;

VGG11
i =B I I
B Acc. Diff.
B Speedup
BSP FA1 FA2 FA4 SSPl SSP2
Transformer
- PPL Diff.
| _ Speedup I

-10

FA1

FA2

FA4

SSP1 SSP2 SS1

Speedup

Related Work

Parallel and Statistical efficiency in distributed training:
[1] Scavenger: A Cloud Service for Optimizing Cost and Performance of ML Training

[2] GraVAC: Adaptive Compression for Communication-Efficient Distributed DL Training

Sensitive/Critical Regions in DNN Training:
[3] The Early Phase of Neural Network Training
[4] Critical Learning Periods in Deep Neural Networks

[5] Accordion: Adaptive Gradient Compression via Critical Learning Regime Identification

Related techniques/methods:
[6] BSP (on PS): Scaling Distributed Machine Learning with the Parameter Server
[7] FedAvg: Communication-Efficient Learning of Deep Network from Decentralized Data
[8] SSP: More Effective Distributed ML via a Stale-Synchronous Parameter Server

[9] ScaDLES: Scalable Deep Learning over Streaming Data at the Edge

Conclusion

* Relative Gradient Change serves as an effective indicator of measuring the significance of each
gradient update in DNN training

* BSP has high synchronization cost; FedAvg mitigates communication with infrequent aggregation
but degrades model generalization; training with SSP saturates convergence due to stale updates

» SelSync achieves similar accuracy to BSP while reducing communication depending on delta value.
Speeds up training by up to 14x in our evaluation

* Large delta raises the threshold for communication, prioritizing speedup over convergence. Small
delta increases synchronization frequency and favors convergence quality.

* Randomized data-injection is effective in the context of semi-synchronous training when training
data is skewed and unbalanced

Thank youl!

Accelerating Distributed ML Training via Selective Synchronization

https://sahiltyagi.academicwebsite.com/

Lar, ge-scale
ML

Stream

Adaptive processing

Systems

