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Why is Distributed ML Training important?

• Exponentially growing size of neural networks in recent years
• 2020: BART (140 million), Turing-NLG (17 billion)
• 2021: ViT (630 million), DALL-E (12 billion)
• 2022: Stable Diffusion (890 million), GPT-3.5 (1.3-175 billion)
• 2023: GPT-4 (1.8 trillion)

• Maintain Data Privacy and security (federated learning)

• Reduce training time and cost/energy of running jobs in the 
cloud/data-center

# Params Params-size (MB)

1e6 4

1e7 40

1e8 400

1e9 4000

• Massive repositories of potential training data



Current Approaches in Distributed Data-Parallel Training

Data-Parallel Training

Bulk-Synchronous 
Parallel [6]

Federated 
Averaging [7]

Stale-Synchronous 
Parallel [8]

SelSync 
(this work)

Semi-synchronousSynchronous



Background: Synchronous Data-Parallel (BSP) Training
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Background: Federated Averaging

• Federated learning crucial for on-device, data-local 
training

• FedAvg [7] is a low-frequency, high-volume federated 
learning approach in settings with balanced and 
unbalanced data distributions  

• Updates from fraction of clients (C) aggregated 
infrequently (E) on a central server. for e.g., (C, E) = 
(0.5, 0.25)

FedAvg: ResNet101 on CIFAR10 and VGG11 
on CIFAR100 with (1, 0.1)

Data distribution significantly affects model 
convergence!



Background: Stale-Synchronous Parallel Training 
• SSP [8] allows workers to asynchronously send updates to central server

• Asynchronicity is however conditional; determined by staleness-threshold parameter ‘s’

• Parallel scaling can be improved by performing more work per-iteration (using larger batch-sizes)

Improving parallel efficiency of SSP

Thus, there are computational 
limits to how much we can 

scale SSP proportional to BSP



Parallel Efficiency in Distributed Training
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Synchronization cost prevents linear scaling of 
distributed training jobs and slows convergence [1, 2]



Statistical Efficiency in Distributed Training
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• SGD  not fully composable due to its 
stochastic nature

• Certain training phases or regions are more 
critical [3,4,5]

First-order information effectively approximates second-order gradients



Summarizing prior methods

• DDP methods either maximize useful work by iterative aggregation of worker updates (BSP) or 
speedup training by reducing communication frequency (FedAvg) or loosening constraints on 
synchronization (SSP) 

• Compared to BSP, semi-synchronous methods attain significant training speedup

• However, they primarily consider the parallel efficiency and not the statistical efficiency of 
distributed training

• This reflects in the final model accuracy/eval metric of FedAvg and SSP under different (C, E) and 
staleness-threshold configurations!



SelSync’s approach

• Ideal approach should consider both the parallel and 
statistical efficiency in distributed training

• Improve parallel efficiency by reducing communication cost

• Improve statistical efficiency by identifying critical/sensitive 
sections of training phase followed by synchronization; 
gradients tend to be more volatile in these regions

SelSync = {Sel}ective {Sync}hronization

Can we communicate updates among workers only if they are critical/important 
and avoid expensive synchronization cost when they are not?

Machine 1 Machine 2 Machine n

Communication hardware/protocol

ML Framework

ML model

SelSync



SelSync’s approach cont’d…

We define Relative Gradient Change as:

Delta-based selective synchronization

• First-order gradient information works as an effective heuristic to measure significance of model 
updates; measure changes in the variance of inter-iteration gradients



Data-partitioning in Synchronous Training

• In traditional BSP, split dataset D into N unique 
partitions across N workers

• Referred to as Default Data-Partitioning (DefDP)

• Does not work well in context of semi-synchronous 
training

• Local models may fail to learn features from data partitions on other workers in settings with low 
communication and largely local training

DefDP



Data-partitioning in Semi-Synchronous Training

• Partitioning scheme optimal for hybrid of local and 
synchronous updates

• Instead of partitioning into subset of unique chunks, 
shuffle chunks of D based on worker ID

• Local model replicas are thus not skewed from mostly 
local training

• During synchronization step, each worker update comes from a unique chunk

• Referred as SelSync Data-Partitioning (SelDP)

SelDP



Data-partitioning in Semi-Synchronous Training cont’d…

ResNet101 on CIFAR10

VGG11 on CIFAR100

AlexNet on ImageNet-1K

Transformer on WikiText-103

Set delta to 0.25



Gradient vs. Parameter Aggregation in SelSync
SelSync Gradient Aggregation
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Gradient vs. Parameter Aggregation in SelSync
Set delta = 0.25 with SelDP scheme ResNet101



Training on unbalanced and Non-I.I.D. data

• Federated learning suffers from low convergence due to unbalanced and skewed data distribution 

• Randomized Data-injection [9] improves distribution while preserving privacy   

SelSync vs. FedAvg with non-I.I.D. data

• Random subset of workers share partial training data at each iteration with (alpha, beta) params

• However, batch-size is a sensitive hyperparameter that affects final model quality 

Data-injection in SelSync needs (alpha, beta, delta) config



Implementation and Evaluation

• Implemented in PyTorch over PS architecture

• Tested on a 16 V100 GPU cluster for IID data, 10-
nodes for non-IID data

• Datasets used: CIFAR10, CIFAR100, ImageNet, 
WikiText-103

• Models trained: ResNet101, VGG11, AlexNet, 
Transformer

We compare SelSync with BSP, FedAvg and SSP

Metrics: Final accuracy/perplexity, overall speedup over BSP



SelSync Overheads

• Gradients computed over each iteration can be noisy; smoothing applied on Relative Gradient 
Change

• Additional overhead of partitioning training data with SelDP scheme



Training Performance
FA1: FedAvg (C, E) = (1, 0.25)
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Related Work

Parallel and Statistical efficiency in distributed training:

 [1] Scavenger: A Cloud Service for Optimizing Cost and Performance of ML Training

 [2] GraVAC: Adaptive Compression for Communication-Efficient Distributed DL Training

Related techniques/methods:

 [6] BSP (on PS): Scaling Distributed Machine Learning with the Parameter Server

 [7] FedAvg: Communication-Efficient Learning of Deep Network from Decentralized Data

 [8] SSP: More Effective Distributed ML via a Stale-Synchronous Parameter Server

 [9] ScaDLES: Scalable Deep Learning over Streaming Data at the Edge

Sensitive/Critical Regions in DNN Training:

 [3] The Early Phase of Neural Network Training

 [4] Critical Learning Periods in Deep Neural Networks

 [5] Accordion: Adaptive Gradient Compression via Critical Learning Regime Identification



Conclusion

• Relative Gradient Change serves as an effective indicator of measuring the significance of each 
gradient update in DNN training 

• BSP has high synchronization cost; FedAvg mitigates communication with infrequent aggregation 
but degrades model generalization; training with SSP saturates convergence due to stale updates

• Large delta raises the threshold for communication, prioritizing speedup over convergence. Small 
delta increases synchronization frequency and favors convergence quality.

• Randomized data-injection is effective in the context of semi-synchronous training when training 
data is skewed and unbalanced

• SelSync achieves similar accuracy to BSP while reducing communication depending on delta value. 
Speeds up training by up to 14x in our evaluation



Thank you!

https://sahiltyagi.academicwebsite.com/
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